纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 26-32.doi: 10.13475/j.fzxb.20220203601

• 纤维材料 • 上一篇    下一篇

防护口罩用改性长效聚(偏氟乙烯-三氟乙烯)压电纤维膜的制备及其性能

张晋1, 张林军2, 解云川1(), 王健1, 贾寅峰3, 路涛4, 张志成1   

  1. 1.西安交通大学 化学学院, 陕西 西安 710049
    2.西安近代化学研究所, 陕西 西安 710065
    3.西安航天复合材料研究所, 陕西 西安 710025
    4.西安百瑞诺机电科技有限公司, 陕西 西安 710025
  • 收稿日期:2022-02-24 修回日期:2022-10-11 出版日期:2023-07-15 发布日期:2023-08-10
  • 通讯作者: 解云川(1976—),男,教授,博士。主要研究方向为高储能电介质、高分子压电材料和高性能封装材料等。E-mail:ycxie@xjtu.edu.cn
  • 作者简介:张晋(1994—),男,硕士生。主要研究方向为聚偏二氟乙烯及其共聚物能量收集器。
  • 基金资助:
    山东省自然科学基金项目(ZR2020LFG010);中央高校基本科研业务费专项资金资助项目(XZY032020017);西安近代化学研究所开放合作创新基金项目(SYJJ20210421)

Preparation and performance of poly(vinylidene fluoride-trifluoroethylene) piezoelectric modified fiber membrane for long-lasting protective masks

ZHANG Jin1, ZHANG Linjun2, XIE Yunchuan1(), WANG Jian1, JIA Yinfeng3, LU Tao4, ZHANG Zhicheng1   

  1. 1. School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
    2. Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, China
    3. Xi'an Aerospace Composites Research Institute, Xi'an, Shaanxi 710025, China
    4. Xi'an Bareno Electromechanical Technology Co., Ltd., Xi'an, Shaanxi 710025, China
  • Received:2022-02-24 Revised:2022-10-11 Published:2023-07-15 Online:2023-08-10

摘要:

聚丙烯(PP)熔喷布表面自由电荷易在湿气等作用下流失,导致过滤层及口罩快速失效。针对以上问题,采用静电纺丝技术在PP熔喷布基体上制备压电聚(偏氟乙烯-三氟乙烯)(P(VDF-TrFE))纤维层,得到PP熔喷布/P(VDF-TrFE)改性过滤层。探究了纺丝工艺对压电纤维形貌和结构的影响,进一步分析了改性过滤层经过水洗、蒸汽等耐久性处理后的静电压、烟雾过滤效率和透气性的变化。结果表明:PP熔喷布/P(VDF-TrFE)改性过滤层对PM2.5的过滤效率较PP熔喷布提高了25%,在进风量为85 L/min时的过滤效率提升了27.5%;经过2次水洗、紫外线照射、蒸煮消毒等方式处理后的改性过滤层,其表面电荷具有多次弯折后可再生的特点,过滤效率维持在90%,有效提高了口罩的防护效率和使用寿命,压电材料在外力作用下可产生束缚电荷,改善了过滤层负载电荷的稳定性,从而提升了口罩防护的长效性和安全性。

关键词: 聚(偏氟乙烯-三氟乙烯), 聚丙烯熔喷布, 静电纺丝, 压电材料, 长效过滤防护, 呼吸气阻, 口罩

Abstract:

Objective Polypropylene (PP) melt-blown fabric has an electrically charged surface that generates an electrostatic field to adsorb micron-sized particles and is widely used as a filter layer in disposable protective masks. However, the free charge was found to be easily lost in the presence of moisture, leading to rapid failure of the filter layer and mask. Disposing of large numbers of masks also puts enormous pressure on environmental protection efforts. Therefore, there is an urgent need to develop masks with high protection capacity and long service life.

Method A piezoelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) fiber layer was prepared by electrospinning on a PP melt-blown fabric substrate, resulting in a PP melt-blown fabric/P(VDF-TrFE) modified filter layer. The modified filter layers took advantage of the fact that piezoelectric materials can generate a bound charge under external forces, providing the mask with a durable electrostatic adsorption capability. The influence of spinning process on the morphology and structure of piezoelectric fibers was studied, and the research further investigated the changes in static voltage, smoke filtration efficiency and breathability of the modified filter layer after durability treatment such as water washing and steam treatment.

Results An optimized electrostatic spinning process was found to prepare excellent-performance piezoelectric P(VDF-TrFE) fiber membranes. The fibers prepared by spinning were free of beads and uniform diameter, with a distinct piezoelectric crystal phase structure, which ensures the breathability of the fiber membrane while providing the mask with a stable load of charge and a durable electrostatic adsorption capacity (Fig. 2, Fig. 3). The piezoelectric fiber layer showed a 25% higher filtration efficiency for PM2.5 than the ordinary PP melt-blown fabric in the smoke filtration effect test. In the standard test of medical masks, the filtration efficiency of the modified filter layer was improved by 10.5% and 27.5% at an inlet airflow of 32 and 85 L/min, respectively (Fig. 6). The static voltage on the surface of the ordinary mask and the modified filter layer was reduced after treatment by water washing, alcohol washing, and steam sterilization. Owing to the presence of the piezoelectric fiber membrane in the modified filter layer, the piezoelectric fiber is still able to recover the static surface voltage of the filter layer well after being subjected to the mechanical effects of bending and pressing several times (Fig. 4). After the durability treatment, the modified filter layer maintained a filtration efficiency of 90% at a both inlet airflow of 32 and 85 L/min, respectively, exceeding the filtration efficiency of the melt-blown fabric itself. However, the organic solvent could destroy the structure of the piezoelectric fibers, resulting in a significant reduction in the filtration efficiency of the ethanol-treated modified filter layer(Fig. 7).

Conclusion As fossil energy sources become depleted and environmental pollution increases, it is necessary to develop and use more effective and durable masks to prevent infectious diseases. The innovation of this work is the introduction of piezoelectric polymer material in the production of masks by an electrostatic spinning process, which significantly improves the difficulty of maintaining the electrostatic adsorption capacity of PP melt-blown fabrics over a long period. Experiments have demonstrated that the modified masks can maintain electrostatic adsorption capacity after washing and steam treatment. The application of the piezoelectric polymer material not only improves the filtration performance of the mask but also endues the mask a long-lasting protection capability. The prolonged service life of the masks can effectively solve the problem of poor utilization of materials.

Key words: poly(vinylidene fluoride-trifluoroethylene), polypropylene melt-blown fabric, electrospinning, piezoelectric material, long-lasting filterability, breathing resistance, mask

中图分类号: 

  • TQ317

图1

自制PM2.5检测装置示意图"

图2

不同电压下制备的P(VDF-TrFE)纤维膜的SEM照片"

图3

P(VDF-TrFE)纤维膜的红外光谱图与XRD谱图"

图4

耐久性处理前后改性过滤层和普通商用PP口罩的静电压变化"

图5

改性过滤层上电荷量示意图"

图6

不同风量下的过滤阻力和过滤效率"

图7

乙醇处理前后纤维结构的SEM照片"

[1] SHIMIZU Kazuki. 2019-nCoV, fake news, and racism[J]. The Lancet, 2020, 395(10225): 685-686.
[2] The Lancet. Emerging understandings of 2019-nCoV[J]. The Lancet, 2020. DOI: 10.1016/s0140-6736(20)30186-0.
doi: 10.1016/s0140-6736(20)30186-0
[3] 苗青, 丛晓东, 王冰, 等. 新型冠状病毒肺炎的中医认识与思考[J]. 中医杂志, 2020, 61(4): 286-288.
MIAO Qing, CONG Xiaodong, WANG Bing, et al. Chinese medical understanding and consideration of novel coronavirus pneumonia[J]. Journal of Traditional Chinese Medicine, 2020, 61(4): 286-288.
[4] 陈凤翔, 翟丽莎, 刘可帅, 等. 防护口罩研究进展及其发展趋势[J]. 西安工程大学学报, 2020, 34(2): 1-12.
CHEN Fengxiang, ZHAI Lisha, LIU Keshuai, et al. Research progress and its developing trend of protective masks[J]. Journal of Xi'an Polytechnic University, 2020, 34(2): 1-12.
[5] 刘延波, 陈志军, 郝铭, 等. 电纺膜替代荷电熔喷布解决口罩短缺问题的可能性分析[J]. 纺织导报, 2020(3): 64-70.
LIU Yanbo, CHEN Zhijun, HAO Ming, et al. Possibility analysis on replacement of electrostatic melt-blown nonwoven fabric to electrospun membraneto solve mask shortage problem[J]. China Textile Leader, 2020(3): 64-70.
[6] 周惠林, 杨卫民, 李好义. 医用口罩过滤材料的研究进展[J]. 纺织学报, 2020, 41(8): 158-165.
ZHOU Huilin, YANG Weimin, LI Haoyi. Research progress of filtering material for medical mask[J]. Journal of Textile Research, 2020, 41(8): 158-165.
doi: 10.1177/004051757104100212
[7] 钟南山. 慢性阻塞性肺疾病在中国[J]. 中国感染控制杂志, 2011, 31(5): 321-322.
ZHONG Nanshan. Chronic obstructive pulmonary disease in China[J]. Chinese Journal of Practical Internal Medicine, 2011, 31(5): 321-322.
[8] 李六亿, 吴安华. 新型冠状病毒医院感染防控常见困惑探讨[J]. 中国感染控制杂志, 2020, 19(2): 105-108.
LI Liuyi, WU Anhua. Confusion on prevention and control of healthcare-associated infection of novel coronavirus[J]. Chinese Journal of Infection Control, 2020, 19(2): 105-108.
[9] 魏秋华, 任哲. 2019新型冠状病毒感染的肺炎疫源地消毒措施[J]. 中国消毒学杂志, 2020, 37(1): 59-62.
WEI Qiuhua, REN Zhe. 2019 disinfection measures for pneumonia outbreak sites with novel coronavirus infection[J]. Chinese Journal of Disinfection, 2020, 37(1): 59-62.
[10] HORVATH Endre, ROSSI Lídia, MERCIER Cyprien, et al. Photocatalytic nanowires-based air filter: towards reusable protective masks[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202004615.
doi: 10.1002/adfm.202004615
[11] 侯冠一, 武文杰, 万海肖, 等. 口罩聚丙烯熔喷布的静电机理及其影响因素的研究进展[J]. 高分子通报, 2020, 8: 1-22.
HOU Guanyi, WU Wenjie, WAN Haixiao, et al. Research progress of static-electricity mechanism and influencing factors of polypropylene melt-blown nonwovens in mask[J]. Polymer Bulletin, 2020, 8: 1-22.
doi: 10.1007/BF00293554
[12] CHUA Minghui, CHENG Weiren, GOH Shermi, et al. Face masks in the new COVID-19 normal: materials, testing, and perspectives[J]. Research, 2020. DOI: 10.34133/2020/7286735.
doi: 10.34133/2020/7286735
[13] 郑剑威, 张维祥, 徐瑞, 等. 医用口罩过滤材料产业发展研究[J]. 科技经济导刊, 2020, 28(14): 54.
ZHENG Jianwei, ZHANG Weixiang, XU Rui, et al. Medical mask filtration material industry development research[J]. Technology and Economic Guide, 2020, 28(14): 54.
[14] 朱怀球, 叶翔宇, 刘芙蓉. 聚四氟乙烯覆膜材料用于口罩过滤材料的可行性研究[J]. 现代纺织技术, 2020, 28(6): 1-4.
ZHU Huaiqiu, YE Xiangyu, LIU Furong. Feasibility study of using PTFE membrane as filter material for masks[J]. Advanced Textile Technology, 2020, 28(6): 1-4.
[15] YANG Ankun, CAI Lili, ZHANG Rufan, et al. Thermal management in nanofiber-based face mask[J]. Nano Letters, 2017, 17(6): 3506-3510.
doi: 10.1021/acs.nanolett.7b00579 pmid: 28505460
[16] CHENG Yongliang, WANG Chunya, ZHONG Junwen, et al. Electrospun polyetherimide electret nonwoven for bi-functional smart face mask[J]. Nano Energy, 2017, 34: 562-569.
doi: 10.1016/j.nanoen.2017.03.011
[17] 高鸣, 任海峰. 固体仪器发动机粘接界面应力监测系统设计[J]. 火炸药学报, 2013, 36(4): 69-73.
GAO Ming, REN Haifeng. Design of the bond stress monitoring system of instrumented motor[J]. Chinese Journal of Explosives & Propellants, 2013, 36(4): 69-73.
[18] 杨明, 黄卫东, 李高春, 等. 基于PVDF传感器的固体推进剂冲击应力测量[J]. 火炸药学报, 2018, 41(5): 496-500.
doi: 10.14077/j.issn.1007-7812.2018.05.013
YANG Ming, HUANG Weidong, LI Gaochun, et al. Measurement of the impact stress of solid propellant based on PVDF sensors[J]. Chinese Journal of Explosives & Propellants, 2018, 41(5): 496-500.
[19] 赵继波, 谭多望, 张远平, 等. PVDF计在水中爆炸近场压力测试中的应用[J]. 火炸药学报, 2009, 32(3): 1-4.
ZHAO Jibo, TAN Duowang, ZHANG Yuanping, et al. Application of PVDF sensor in underwater explosive shock wave measurement at near-field[J]. Chinese Journal of Explosives & Propellants, 2009, 32(3): 1-4.
[20] XUE Jiajia, PISIGNANO Dario, XIA Younan. Maneuvering the migration and differentiation of stem cells with electrospun nanofibers[J]. Advanced Science, 2020. DOI: 10.1002/advs.202000735.
doi: 10.1002/advs.202000735
[21] ZHANG Jun, ZHAO Yingtao, HU Pengyue, et al. Laparoscopic electrospinning for in situ hemostasis in minimally invasive operation[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.125089.
doi: 10.1016/j.cej.2020.125089
[22] SHEN Zhonghui, WANG Jianjun, LIN Yuanhua, et al. High-throughput phase-field design of high-energy-density polymer nanocomposites[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201704380.
doi: 10.1002/adma.201704380
[23] JIANG Yanda, ZHANG Xin, SHEN Zhonghui, et al. Ultrahigh breakdown strength and improved energy density of polymer nanocomposites with gradient distribution of ceramic nanoparticles[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.201906112.
doi: 10.1002/adfm.201906112
[24] ZHANG Yue, CHI Qingguo, LIU Lizhu, et al. PVDF-based dielectric composite films with excellent energy storage performances by design of nanofibers composition gradient structure[J]. ACS Applied Energy Materials, 2018, 1(11): 6320-6329.
doi: 10.1021/acsaem.8b01306
[25] QIAO Baobao, WANG Xiao, TAN Shaobo, et al. Synergistic effects of maxwell stress and electrostriction in electromechanical properties of poly(vinylidene fluoride)-based ferroelectric polymers[J]. Macromolecules, 2019, 52(22): 9000-9011.
doi: 10.1021/acs.macromol.9b01580
[26] 颜菲菲. 口罩紫外老化降解及其对口罩载体效应的影响[D]. 济南: 山东师范大学, 2022:6-8.
YAN Feifei. UV aging degradation of disposable surgical masks and its influence on their carrier effects[D]. Ji'nan: Shandong Normal University, 2022: 6-8.
[27] 何俊美, 魏秋华, 任哲, 等. 在新型冠状病毒肺炎防控中口罩的选择与使用[J]. 中国消毒学杂志, 2020, 37(2): 137-141.
HE Junmei, WEI Qiuhua, REN Zhe, et al. Selection and use of masks in the prevention and control of novel coronavirus pneumonia[J]. Chinese Journal of Disinfection, 2020, 37(2): 137-141.
[28] 陈美玉, 周莹莹, 王红红, 等. 市场口罩的过滤特征与舒适性分析[J]. 纺织高校基础科学学报, 2018, 31(3): 281-288.
CHEN Meiyu, ZHOU Yingying, WANG Honghong, et al. Filtering characteristics and comfort performance of the masks in the market[J]. Basic Sciences Journal of Textile Universities, 2018, 31(3): 281-288.
[29] DBOUK Talib, DRIKAKIS Dimitris. On respiratory droplets and face masks[J]. Physics of Fluids, 2020. DOI: 10.1063/5.0015044.
doi: 10.1063/5.0015044
[30] LIU G, NIE J, HAN C, et al. Self-powered electrostatic adsorption face mask based on a triboelectric nanogenerator[J]. ACS Appl Mater Interfaces, 2018, 10(8): 7126-7133.
doi: 10.1021/acsami.7b18732
[31] HOSSAIN Emroj, BHADRA Satyanu, JAIN Harsh, et al. Recharging and rejuvenation of decontaminated N95 masks[J]. Physics of Fluids, 2020. DOI: 10.1063/5.0023940.
doi: 10.1063/5.0023940
[1] 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25.
[2] 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(07): 214-221.
[3] 王玉周, 周梦洁, 姜圆金, 陈家本, 李玥. 偕胺肟化聚丙烯腈纳米纤维膜的制备与油水乳液分离性能[J]. 纺织学报, 2023, 44(07): 42-49.
[4] 王青弘, 王迎, 郝新敏, 郭亚飞, 王美慧. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(06): 144-151.
[5] 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224.
[6] 史豪秦, 于影, 左雨欣, 刘宜胜, 左春柽. SnO2/聚乙烯吡咯烷酮防腐薄膜的制备及其在柔性铝-空气电池中的应用[J]. 纺织学报, 2023, 44(06): 33-40.
[7] 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49.
[8] 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56.
[9] 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76.
[10] 李好义, 贾紫初, 刘宇亮, 谭晶, 丁玉梅, 杨卫民, 牟文英. 高压静电加载形式对聚合物熔体静电直写制备效果的影响[J]. 纺织学报, 2023, 44(04): 32-37.
[11] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[12] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[13] 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35.
[14] 葛铖, 郑元生, 刘凯, 辛斌杰. 电压对静电纺串珠纤维成形过程的影响[J]. 纺织学报, 2023, 44(03): 36-41.
[15] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!