纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 33-41.doi: 10.13475/j.fzxb.20220507501

• 纤维材料 • 上一篇    下一篇

基于氯化聚氯乙烯/聚乙烯醇缩丁醛共混膜的界面聚合改性

范洋瑞, 钱建华(), 徐凯杨, 王澳, 陶正龙   

  1. 浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
  • 收稿日期:2022-05-26 修回日期:2023-04-20 出版日期:2023-07-15 发布日期:2023-08-10
  • 通讯作者: 钱建华(1973—),男,教授,硕士。主要研究方向为功能性纤维材料和膜过滤材料。E-mail:qianjianhua@zstu.edu.cn
  • 作者简介:范洋瑞(1997—),男,硕士生。主要研究方向为新型纤维材料。

Interfacial polymerization modification of chlorinated polyvinyl chloride/polyvinyl butyral blend membrane

FAN Yangrui, QIAN Jianhua(), XU Kaiyang, WANG Ao, TAO Zhenglong   

  1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310018, China
  • Received:2022-05-26 Revised:2023-04-20 Published:2023-07-15 Online:2023-08-10

摘要:

为提高纳滤(NF)膜的离子分离效率,以氯化聚氯乙烯/聚乙烯醇缩丁醛(CPVC/PVB)共混膜作为基膜,利用添加剂聚乙二醇(PEG)、1,2-丙二醇(PG)对基膜进行表面亲水改性。以改性后的CPVC/PVB共混膜作为支撑层,通过水相单体间苯二胺(MPD)与油相单体均苯三甲酰氯(TMC),在反应助剂N-乙基胺哌嗪丙基磺酸盐(AEPPS)的催化下发生界面聚合得到复合NF膜。研究了水相单体MPD质量分数、油相单体TMC质量分数和反应助剂AEPPS质量分数等参数对复合NF膜结构和性能的影响。结果表明:当MPD、TMC、AEPPS的质量分数分别为0.6%、0.5%和0.6%时,纳滤膜表面的三维形貌变得平整,粗糙度降低,结构更加致密,亲水性得以提高;纳滤膜表面形成了荷正电结构致密的聚酰胺分离层,对Mg2+具有较好的分离效果,在水质软化、海水淡化、工业废水处理等领域具有良好的进一步开发与应用前景。

关键词: 氯化聚氯乙烯, 聚乙烯醇缩丁醛, 荷正电纳滤膜, 界面聚合, 微观结构, 过滤材料, 水处理

Abstract:

Objective In order to improve the ion separation efficiency of nanofiltration (NF) membrane and improve hydrophilicity and surface smoothness of chlorinated polyvinyl chloride/polyvinyl butyral (CPVC/PVB) blend membrane, this research investigated the modification of CPVC/PVB blend membrane, and the structure and properties of nanofiltration membrane before and after modification were analyzed to broaden the application of CPVC/PVB blend membrane.

Method CPVC/PVB blend membranes were used as the base membrane, and the surface of the base membranes were modified to improve hydrophilicity using the additives of polyethylene glycol (PEG) and 1,2-propanediol (PG). Using the modified CPVC/PVB blend membranes as the support layer, water phase monomer m-phenylenediamine (MPD) and the oil phase monomer trimesic acid chloride (TMC) were polymerized on the support layer interfacial, by the reaction assistant N-ethylamine piper under the catalysis of azinepropyl sulfonate (AEPPS). The Influences of mass fractions of MPD, TMC and AEEPS on the structure and performance of composite nanofiltration membranes were studied. A series of experiments were carried out using Fourier infrared spectrometer, field emission scanning electron microscope, ultraviolet and visible spectrophotometer, energy spectrum analyzer, Zeta potential tester, and water flux tester. The influences of the infrared spectrum of the blend membrane, surface elements, the cross-section structure of the surface microstructure, the Zeta potential of the membrane surface, and the monomer mass fraction required for the interfacial polymerization on the water flux and desalination performance of the nanofiltration membrane were obtained.

Results After the interface polymerization of CPVC/PVB blend membrane, two characteristic peaks and amino groups were added to the infrared spectrum (Fig. 3). With the increase of the mass fraction of MPD monomer, the proportion of N elements on the membrane surface first increased and then decreased (Tab. 1).The increase in N element is due to the introduction of amino groups on the membrane surface. The decrease in N element content is due to the fact that the surface of the nanofiltration membrane becomes dense with the introduction of amino groups, making it impossible to introduce more amino groups. The surface of the modified nanofiltration membrane became smoother and the pore size became smaller, resulting in the formation of a dense layer, while the section structure had no obvious change (Fig. 4, Fig. 5). According to the Zeta potential test, when pH value was equal to 7, the Zeta potential of the unmodified nanofiltration membrane was negative, and the zeta potential of the modified membrane surface turned positive (Fig. 6). With the increase of the mass fractions of MPD and TMC, the water flux first decreased and then increased. The reason for the decrease in water flux is the formation of a dense functional thin layer on the membrane surface, making it more difficult for water to pass through. The reason for the increase in water flux is that as the content of MPD, TMC and AEEPS increases, the functional thin layer on the surface of the nanofiltration membrane has stabilized and will not become denser. AEEPS contains hydrophilic groups, which can improve the water flux of the membrane.With the increase of the mass fraction of MPD, TMC and AEEPS, the desalination efficiency of nanofiltration membrane was increased first and then decreased (Fig. 7-Fig. 9). After the interfacial polymerization reaction occurs, the positively charged nanofiltration membrane improves the filtration efficiency of divalent cations, thereby improving the desalination efficiency of the nanofiltration membrane. However, with the increase of MPD and AEEPS, excessive amino and hydrophilic groups were introduced, making the surface of the nanofiltration membrane more porous, resulting in an increase in water flux and a decrease in desalination efficiency.

Conclusion After interfacial polymerization, a dense polyamide separation layer was formed on the surface of the CPVC/PVB blended membrane, more amino groups were introduced, the membrane surface was positively charged, and the water flux was improved. When the mass fractions of MPD, TMC and AEPPS were 0.6%, 0.5% and 0.6%, respectively, the three-dimensional morphology of the nanofiltration membrane surface became complete, the surface roughness was reduced, and the structure was more compact, showing the best desalination performance and the best separation performance for divalent cations. Therefore, the nanofiltration membranes have further development and application prospects in the fields of water softening, seawater desalination, and industrial wastewater treatment.

Key words: chlorinated polyvinyl chloride, polyvinyl butyral, positively charged nanofiltration membrane, interface polymerization, microstructure, filter material, water treatment

中图分类号: 

  • TQ051.893

图1

MPD和TMC界面聚合反应机制图"

图2

水通量及截留测试装置 1—氮气钢瓶;2—精密压力表;3—阀门;4—原料罐;5—纳滤膜池;6—待测膜;7—磁力搅拌器;8—滤出液烧杯;9—电子计数天平;10—计算机。"

图3

基膜和纳滤膜的红外光谱图"

表1

基膜和纳滤膜的表面元素含量"

样品
编号
原子分数/% O与N元素原子
分数比值
C元素 O元素 N元素
N-0 74.26 25.74 0.00
N-1 72.59 19.58 7.83 2.50
N-2 71.62 19.66 8.72 2.25
N-3 66.24 19.08 14.68 1.30
N-4 70.52 18.14 11.34 1.60

图4

基膜和纳滤膜表面及断面的SEM照片"

图5

基膜和纳滤膜表面的三维形貌"

图6

基膜和纳滤膜的表面Zeta电位"

图7

不同MPD质量分数下纳滤膜纯水通量和脱盐性能的变化"

图8

不同TMC质量分数下纳滤膜纯水通量和脱盐性能的变化"

图9

不同AEPPS质量分数下纳滤膜的纯水通量和脱盐性能变化"

图10

最佳工艺纳滤膜与基膜的脱盐性能对比"

[1] 刘乃力, 晋亚太. 浅谈纳滤膜水处理技术在净水工艺中的应用[J]. 四川建材, 2021, 47(11):216-217.
LIU Naili, JIN Yatai. Application of nanofiltration membrance treatment technology in water purification process[J]. Sichuan Building Materials, 2021, 47(11):216-217.
[2] 许振良, 汤永健, 周秉武, 等. 纳滤膜功能层构筑及其应用[J]. 水处理技术, 2015, 41(12): 3-9,19.
XU Zhenliang, TANG Yongjian, ZHOU Bingwu, et al. Nanofiltration membrane functional layer construction and its application[J]. Water Treatment Technology, 2015, 41(12): 3-9,19.
[3] 李泽辉, 崔恒, 王军. 氯化聚氯乙烯复合纳滤膜的制备及其在模拟RB5染料废水处理中的应用[J]. 化工进展, 2021, 40(S1):456-465.
doi: 10.16085/j.issn.1000-6613.2021-0088
LI Zehui, CUI Heng, WANG Jun. Preparation of CPVC composite nanofiltration membrane and its application in simulated RB5 dye wastewater treatment[J]. Chemical Progress, 2021, 40(S1):456-465.
[4] 隋燕, 彭跃莲, 钱英. 聚氯乙烯共混超滤膜研究[J]. 膜科学与技术, 2005, 25(3):101-105.
SUI Yan, PENG Yuelian, QIAN Ying. Compatibility research of PVC/PVB blend membrane[J]. Membrane Science and Technology, 2005, 25(3):101-105.
[5] LUW J, SHID Q, ZHANG H M. Advanced poly(vinyl pyrrolidone) decorated chlorinated polyvinyl chloride membrane with low area resistance for vanadium flow battery[J]. Journal of Membrane Science, 2021.DOI:10.1016/j.memsci.2020.118947.
doi: 10.1016/j.memsci.2020.118947
[6] CHENG J, YANGY Y, KANGD D. Enhanced performances of chlorinated polyvinyl chloride (CPVC) ultrafiltration membranes by styrene-maleic anhydride copolymer[J]. Separation and Purification Technology, 2021, 258(P2):1-12.
[7] 刘倩文. CPVC/PVB共混膜改性研究[D]. 上海: 东华大学, 2017:1-63.
LIU Qianwen. The research on mofication of CPCV/PVB blend membranes[D]. Shanghai: Donghua University, 2017:1-63.
[8] 徐凯杨, 钱建华, 孙丽颖, 等. 氯化聚氯乙烯/聚乙烯醇缩丁醛共混膜的亲水改性[J]. 现代纺织技术, 2021, 30(4):179-185.
XU Kaiyang, QIAN Jianhua, SUN Liying, et al. Hydrophilic modification of chlorinated polyvinyl chloride/polyvinyl butyral blend film[J]. Advanced Textile Technology, 2021, 30(4):179-185.
[9] 张大鹏, 姜蕾, 刘兆峰, 等. MCM-48改性三醋酸纤维素正渗透膜的制备及性能表征[J]. 水处理技术, 2017, 43(3):25-28.
ZHANG Dapeng, JIANG Lei, LIU Zhaofeng, et al. MCM-48 modified cellulose triacetate forward osmosis membrane preparation and performance character-ization[J]. Water Treatment Technology, 2017, 43(3):25-28.
[10] XU F, DAI L, WU Y. Li+/Mg2+ separation by membrane separation: the role of the compensatory effect[J]. Journal of Membrane Science, 2021, 636: 1-15.
[11] SUSANTO H, STAHRA N, ULBRICHT M. High performance polyethersulfone microfiltration membranes having high flux and stable hydrophilic property[J]. Journal of Membrane Science, 2009, 342(1/2):153-164.
doi: 10.1016/j.memsci.2009.06.035
[12] 孙阳. 水处理行业中膜分离技术的应用[J]. 居舍, 2020(7):51.
SUN Yang. Application of membrane separation technology in water treatment industry[J]. Residence, 2020(7):51.
[13] XU Y, LUO Y X, WANG F. Preparation and characterizations of poly(vinyl butyral)/caprolactam/polyethylene glycols hydrophilic flat-sheet membrane through thermally induced phase separation[J]. Chemistry Select, 2019, 4(29):8500-8507.
[14] HU P, YUAN B B, NIU Q J. Modification of polyamide nanofiltration membrane with ultra-high multivalent cations rejections and mono-/divalent cation selec-tivity[J]. Desalination, 2022, 527:22-37.
[15] KLAYSOM C, HERMANS S, GAHLAUT A, et al. Polyamide/polyacrylonitrile (PA/PAN) thin film composite osmosis membranes: film optimization, characterization and performance evaluation[J]. Journal of Membrane Science, 2013, 445: 25-33.
doi: 10.1016/j.memsci.2013.05.037
[16] LI W, LOU L, HAI Y, et al. Polyamide thin film composite membrane using mixed amines of thiourea and m-phenylenediamine[J]. RSC Advances, 2015, 5(67): 54125-54132.
doi: 10.1039/C5RA02589C
[17] 郭玉海, 朱海霖, 王峰, 等. 聚四氟乙烯滤膜的发展及应用[J]. 纺织学报, 2015, 36(9):150-153.
GUO Yuhai, ZHU Hailin, WANG Feng, et al. Development and application of polyterafluoroethylene filtration membrane[J]. Journal of Textile Research, 2015, 36(9):150-153.
[18] 刘艳辉, 徐克, 张晓晨. 聚吡咯/活性炭复合电极对不同离子电吸附性研究[J]. 工业水处理, 2016, 36(10):28-31.
LIU Yanhui, XU Ke, ZHANG Xiaochen. Research on polypyrrole/activated carbon composite electrode used for the electro-adsorbability for different ions[J]. Industrial Water Treatment, 2016, 36(10):28-31.
[19] 韩建建, 胡勇杰, 胡敏专. 基于纳滤技术的质检萃取液脱色预处理方法[J]. 纺织学报, 2019, 40(9):137-142.
HAN Jianjian, HU Yongjie, HU Minzhuan. Decolorization pretreatment method of quality inspection extraction solution based on nanofiltration techno-logy[J]. Journal of Textile Research, 2019, 40(9):137-142.
[1] 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224.
[2] 王国琴, 付小航, 朱羽科, 吴礼光, 王挺, 蒋孝佳, 陈华丽. 可见光响应的介孔TiO2光降解罗丹明B机制及其降解途径[J]. 纺织学报, 2023, 44(05): 155-163.
[3] 杨潇东, 于斌, 孙辉, 朱斐超, 刘鹏. 聚乙烯三氟氯乙烯熔喷非织造材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(02): 19-26.
[4] 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63.
[5] 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15.
[6] 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111.
[7] 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105.
[8] 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155.
[9] 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131.
[10] 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120.
[11] 高陆玺, 吕雪川, 张弛, 宋翰林, 高肖汉. 用于印染废水处理的改性絮凝剂合成及其脱色性能[J]. 纺织学报, 2022, 43(07): 121-128.
[12] 钱佳琪, 瞿建刚, 胡啸林, 毛庆辉. 还原氧化石墨烯/粘胶基钒酸铋光催化材料的制备及其性能[J]. 纺织学报, 2022, 43(06): 100-106.
[13] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[14] 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123.
[15] 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!