纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 1-8.doi: 10.13475/j.fzxb.20220308201
• 纤维材料 • 下一篇
连丹丹1,2, 王镭1, 杨雅茹3, 尹立新2, 葛超1, 卢建军1()
LIAN Dandan1,2, WANG Lei1, YANG Yaru3, YIN Lixin2, GE Chao1, LU Jianjun1()
摘要:
为提高聚苯硫醚(PPS)纤维的吸湿性能、染色性能和抗紫外线性能,利用双螺杆挤出机和熔融纺丝机将聚丙烯酸钠(PAAS)和纳米TiO2与PPS共混制备复合纤维,并对PPS/PAAS/TiO2复合纤维的结构、性能进行了分析。结果表明:PAAS和纳米TiO2在PPS基体中的分散相容良好,纳米TiO2可提高PPS的结晶度,而PAAS会降低PPS的结晶度;当PAAS质量分数为2%时,复合纤维的综合性能最优,断裂强度为3.06 cN/dtex,断裂伸长率为30.4%,水接触角达52.1°,标准回潮率提高到3.5%,上染率为90.9%,耐皂洗色牢度达到5级,耐光照色牢度达到7级,50 ℃加速紫外光老化120 h后强度保持率在85%以上。PAAS和纳米TiO2附带的功能基团和在PPS基体中形成的多级网络结构提高了复合纤维吸湿性、染色性能和抗紫外线性能。
中图分类号:
[1] | 李利君, 蒲宗耀, 李风, 等. 聚苯硫醚纤维的热降解动力学[J]. 纺织学报, 2010, 31(12): 4-8. |
LI Lijun, PU Zongyao, LI Feng, et al. Thermal degradation kinetics of polyphenylene sulfide fibers[J]. Journal of Textile Research, 2010, 31(12): 4-8. | |
[2] |
GE Feifan, WAN Neng, TSOU Chihui, et al. Thermal properties and hydrophilicity of antibacterial poly(phenylene sulfide) nanocomposites reinforced with zinc oxide-doped multiwall carbon nanotubes[J]. Journal of Polymer Research, 2022. DOI:10.1007/s10965-022-02931-9.
doi: 10.1007/s10965-022-02931-9 |
[3] |
LIAN Dandan, DAI Jinming, ZHANG Ruiping, et al. Enhancing the resistance against oxidation of polyphenylene sulphide fiber via incorporation of nano TiO2-SiO2 and its mechanistic analysis[J]. Polymer Degradation and Stability, 2016, 129: 77-86.
doi: 10.1016/j.polymdegradstab.2016.04.004 |
[4] |
WOJCIECH Czerwiński. Electronic processes in poly(p-henylene) and related compounds: Ⅱ: structure and electrical properties of polymers related to poly(p-henylene sulfide)[J]. Die Angewandte Makromolekulare Chemie, 2003, 144(1): 101-112.
doi: 10.1002/apmc.1986.051440108 |
[5] | EVAIAH R G, KOTRESH T M, KANDASUBRAMANIAN B. Technical textiles for military applications[J]. Journal of The Textile Institute, 2019(3):1-36. |
[6] |
LIU Shuai, LIIU Zheng, BAI Xie. Comparative analysis of fibers for thermal protective clothing[J]. Advanced Materials Research, 2013, 627:29-32.
doi: 10.4028/www.scientific.net/AMR.627 |
[7] | 李颖娜, 孙元, 邓新华, 等. 聚苯硫醚接枝聚丙烯酸的研究[J]. 天津工业大学学报, 2006, 25(2): 52-54. |
LI Yingna, SUN Yuan, DENG Xinhua, et al. Research on graft polymerization of acrylic acid onto polyphenylene sulfide[J]. Journal of Tianjin Polytechnic University, 2006, 25(2):52-54. | |
[8] | 徐志成, 张伟政, 等.王乐译, 氯磺酸磺化PPS非织毡薄膜及表征[J]. 膜科学与技术, 2016, 36(5): 68-71. |
XU Zhicheng, WANG Leyi, ZHANG Weizheng, et al. Sulphuration of PPS non-woven felt thin film by chlorosulfonic acid and characterization[J]. Membrane Science and Technology, 2016, 36(5): 68-71. | |
[9] | 申霄晓, 张蕊萍, 连丹丹, 等. 吸湿性 PPS 共混母粒的制备及性能研究[J]. 合成纤维工业, 2013, 36(5):12-15. |
SHEN Xiaoxiao, ZHANG Ruiping, LIAN Dandan, et al. Preparation and properties of hygroscopic PPS blend masterbatch[J]. China Synthetic Fiber Industry, 2013, 36(5):12-15. | |
[10] | 胡泽旭, 陈姿晔, 相恒学, 等. 石墨烯改性聚苯硫醚纤维光稳定性及其增强机制[J]. 纺织学报, 2017, 38(11): 1-8. |
HU Zexu, CHEN Ziye, XIANG Hengxue, et al. Light-stability and enhancement mechanism of polyphenylene sulfide fiber modified by graphene[J]. Journal of Textile Research, 2017, 38(11): 1-8.
doi: 10.1177/004051756803800101 |
|
[11] | 任靖屹. 吸湿易染抗紫外聚苯硫醚纤维的制备及其性能研究[D]. 太原: 太原理工大学, 2020:11-13. |
REN Jingyi. Preparation and properties of hygroscopic, dyeable and UV resistant polyphenylene sulfide fibers[D]. Taiyuan: Taiyuan University of Technology, 2020: 11-13. | |
[12] |
DENG Shuling, LIN Zhidan, XU Baofeng, et al. Isothermal crystallization kinetics, morphology, and thermal conductivity of graphene nanoplatelets/polyphenylene sulfide composites[J]. Journal of Thermal Analysis and Calorimetry, 2014, 118: 197-203.
doi: 10.1007/s10973-014-3958-1 |
[13] | 刘振海, 山立子, 陈学思. 聚合物量热测定[M]. 北京: 化学工业出版社, 2002: 143-167. |
LIU Zhenhai, SHAN Lizi, CHEN Xuesi. Polymer calorimetry[M]. Beijing: Chemical Industry Press, 2002: 143-167. | |
[14] | 郑邦乾, 张洁辉, 蒋序林. 高吸水性树脂与PVC共混的研究[J]. 塑料工业, 1992(5): 35-39. |
ZHENG Bangqian, ZHANG Jiehui, JIANG Xulin. A study of the blending of super water-absorbing resin with PVC[J]. China Plastics Industry, 1992(5): 35-39. | |
[15] |
HU Zexu, LI Lili, SUN Bin, et al. Effect of TiO2@SiO2nanoparticles on the mechanical and UV-resistance properties of polyphenylene sulfide fibers[J]. Progress in Natural Science, 2015, 25: 310-315.
doi: 10.1016/j.pnsc.2015.08.004 |
[16] |
LIAN Dandan, REN Jingyi, HAN Wenxin, et al. Kinetics and evolved gas analysis of the thermo-oxidative decomposition for neat PPS fiber and nano Ti-SiO2 modified PPS fiber[J]. Journal of Molecular Structure, 2019, 1196: 734-746.
doi: 10.1016/j.molstruc.2019.07.023 |
[17] |
BESSEM Kordoghli, RAMZI Khiari, MOHAMED Farouk Mhenn, et al. Sulfonation of polyester fabrics by gaseous sulfur oxide activated by UV irradiation[J]. Applied Surface Science, 2012, 258(24): 9737-9741.
doi: 10.1016/j.apsusc.2012.06.021 |
[18] | 张蕊萍, 相鹏伟, 郭健, 等. 徐冷温度对聚苯硫醚纤维结构与性能的影响[J]. 纺织学报, 2013, 34(8): 17-21. |
ZHANG Ruiping, XIANG Pengwei, GUO Jian, et al. Effect of slow cooling temperature on structure and properties of PPS fibers[J]. Journal of Textile Research, 2013, 34(8): 17-21. | |
[19] | MAGORZATA P Oksińska, ELBIETA G Magnucka, KRZYSZTOF Lejcu, et al. Biodegradation of the cross-linked copolymer of acrylamide and potassium acrylate by soil bacteria[J]. Environmental Science & Pollution Research, 2016, 23(6): 1-9. |
[20] |
FUMINORI Ito, YURIKO Nishiyama, DUAN Shuhong, et al. Development of high-performance polymer membranes for CO2 separation by combining functionalities of polyvinyl alcohol (PVA) and sodium polyacrylate (PAANa)[J]. Journal of Polymer Research, 2019, 26(5): 2-9.
doi: 10.1007/s10965-018-1664-6 |
[21] |
SUGAMA Toshifumi. Antioxidants for retarding hydrothermal oxidation of polyphenylenesulfide coatings in geothermal environments[J]. Materials Letters, 2000, 43: 185-191.
doi: 10.1016/S0167-577X(99)00257-8 |
[22] | WEI Dongya, HE Ning, ZHAO Jing, et al. Mechanical, water-Sswelling, and morphological properties of water-swellable thermoplastic vulcanizates based on high density polyethylene/chlorinated polyethylene/nitrile butadiene rubber/cross-linked sodium polyacrylate blends[J]. Polymer Plastics Technology & Engineering, 2015, 54(6): 616-624. |
[1] | 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136. |
[2] | 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32. |
[3] | 王国琴, 付小航, 朱羽科, 吴礼光, 王挺, 蒋孝佳, 陈华丽. 可见光响应的介孔TiO2光降解罗丹明B机制及其降解途径[J]. 纺织学报, 2023, 44(05): 155-163. |
[4] | 宋洁, 蔡涛, 郑福尔, 郑环达, 郑来久. 涤纶针织鞋材超临界CO2无水染色性能[J]. 纺织学报, 2023, 44(05): 46-53. |
[5] | 邢剑, 张书诚, 于天娇, 唐文斌, 王亮, 徐珍珍, 梁波涛. 废弃聚苯硫醚纤维的回收再利用研究进展[J]. 纺织学报, 2023, 44(04): 222-229. |
[6] | 钱红飞, KOBIR MD. Foysal, 陈龙, 李林祥, 方帅军. 聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能[J]. 纺织学报, 2023, 44(03): 104-110. |
[7] | 贾艳梅, 于学智. 柞叶染料对柞蚕丝织物的染色及其吸附动力学研究[J]. 纺织学报, 2023, 44(03): 119-125. |
[8] | 王金坤, 刘秀明, 房宽峻, 乔曦冉, 张帅, 刘冬冬. 双乙烯砜基团活性染料染色对棉织物防皱性能的提升[J]. 纺织学报, 2023, 44(02): 207-213. |
[9] | 冯艳, 李亮, 刘淑萍, 李淑静, 刘让同. 氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效[J]. 纺织学报, 2022, 43(10): 112-118. |
[10] | 付政, 李敏, 何颖婷, 王春霞, 付少海. 纳米包覆分散染料的制备及其免水洗染色性能[J]. 纺织学报, 2022, 43(09): 129-136. |
[11] | 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155. |
[12] | 何杨, 张瑞萍, 何勇, 范爱民. 激光改性涤纶织物的分散染料染色性能[J]. 纺织学报, 2022, 43(04): 102-109. |
[13] | 何颖婷, 李敏, 付少海. 靛蓝分散体的制备及其还原-氧化过程[J]. 纺织学报, 2022, 43(04): 84-89. |
[14] | 周天博, 郑环达, 蔡涛, 于佐君, 王力成, 郑来久. 活性分散黄染料对涤纶/棉混纺织物的超临界CO2同浴染色[J]. 纺织学报, 2022, 43(03): 116-122. |
[15] | 金耀峰, 刘雷艮, 王薇, 陆鑫. 纳米纤维素室温诱导下的金红石型纳米二氧化钛制备及其紫外线屏蔽性能[J]. 纺织学报, 2022, 43(02): 176-182. |
|