纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 133-142.doi: 10.13475/j.fzxb.20220801801

• 染整与化学品 • 上一篇    下一篇

复合改性氧化石墨烯接枝水性聚氨酯的制备及其性能

辛华(), 李阳帆, 罗浩   

  1. 陕西科技大学 化学与化工学院, 陕西 西安 710021
  • 收稿日期:2022-08-04 修回日期:2023-05-23 出版日期:2023-08-15 发布日期:2023-09-21
  • 作者简介:辛华(1980—),女,副教授,博士。主要研究方向为功能高分子材料。E-mail:xinhua@sust.edu.cn
  • 基金资助:
    国家自然科学基金项目(51603117)

Preparation of composite modified graphene oxide grafted aqueous polyurethane and its properties

XIN Hua(), LI Yangfan, LUO Hao   

  1. College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
  • Received:2022-08-04 Revised:2023-05-23 Published:2023-08-15 Online:2023-09-21

摘要:

为提升水性聚氨酯(WPU)织物涂层的疏水性能、力学性能和抗静电性能,以异氟尔酮二异氰酸酯、间苯二胺接枝改性氧化石墨烯(MPD-I-GO)作为部分硬段,聚醚二元醇(PTMG 1000)为软段,二羟甲基丙酸为亲水扩链剂制得了MPD-I-GO/WPU复合胶膜。探究了MPD-I-GO质量分数对复合胶膜的疏水性能、力学性能以及导电性能的影响。结果表明:MPD-I-GO的添加可以发挥补强作用,有利于提高织物涂层的力学性能和抗静电性能,且随着MPD-I-GO质量分数的增加,复合乳液的粒径增大至89.56 nm;MPD-I-GO因在有机相与无机相之间形成共价键从而使其在WPU中均匀分散,当MPD-I-GO质量分数为0.18%时,复合涂层的断裂强度高达14.32 MPa,电阻率可达205 Ω·cm。

关键词: 水性聚氨酯, 功能化石墨烯, 复合涂层, 疏水性, 抗静电性

Abstract:

Objective Waterborne polyurethane fabric finishing agents are limited in their applications due to their poor hydrophobicity and electrical conductivity. This study aims to enhance the hydrophobicity, mechanical properties and electrical conductivity of waterborne polyurethane by incorporating functionalized graphene oxide. The goal is to create a multifunctional waterborne polyurethane fabric finishing agent that can expand its range of applications.

Method Functionalized graphene oxide (MPD-I-GO) was synthesized by sequentially reacting isophorone diisocyanate (IPDI) and m-phenylenediamine (MPD) with graphene oxide (GO). MPD-I-GO was then incorporated into waterborne polyurethane(WPU) at a specific mass fraction to produce an MPD-I-GO/WPU fabric coating. The chemical structure, crystallinity and microscopic morphology of MPD-I-GO were characterized using infrared spectroscopy, Raman spectroscopy, X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Additionally, the hydrophobicity, mechanical properties and electrical conductivity of the composite films were evaluated and analyzed using a surface wetting angle meter, universal tensile tester and four-probe conductivity meter.

Results The MPD was introduced into the GO surface with IPDI as a bridge to make MPD-I-GO (Fig. 2). It also intercalates into the GO sheet layer, making part of the layer spacing increase and disorder increase (Fig. 3 and Fig. 4). When the MPD-GO addition is 0.18% and below, the composite latex particles were spherical with uniform sizes and were evenly distributed with no aggolomeration, and the average particle size was about 44.77 nm (Fig. 7 and Fig. 8). The contact angle of the composite latex membrabe showed an increasing trend with the increase of MPD-I-GO mass fraction (Fig. 10), and when MPD-I-GO was added, wrinkles appeared in the cross section of the composite latex membrane and became more and more obvious with the increase of MPD-I-GO mass fraction (Fig. 12). The addition of MPD-I-GO significantly improved the mechanical properties of WPU (Fig. 13). The resistivity of the composite latex membrane decreased significantly after the addition of MPD-I-GO, and with the increase of the mass fraction of MPD-I-GO the resistivity of the composite latex membrane all showed a trend of first decreasing and then increasing, and reaching the minimum value of 205 Ω/cm at 0.18% (Fig. 14).

Conclusion In this work, MPD-I-GO was prepared by modifying GO with IPDI and MPD successively and introduced into WPU, and the effect of mass fraction of MPD-I-GO on the properties of composite adhesive films was investigated. The study showed that IPDI and MPD were successfully grafted onto GO without completely destroying the lamellar structure of GO. In addition, when the addition amount of MPD-I-GO was below 0.18%, MPD-I-GO could be uniformly dispersed in WPU and effectively promoted the improvement of hydrophobicity, mechanical properties and electrical conductivity at the same time. The introduction of MPD-I-GO improved the roughness of the surface of the latex film, thus improving the hydrophobicity of the composite at the structural level. This indicates that the introduction of MPD-I-GO can effectively enhance the performance of WPU and promote the functionalized application of waterborne polyurethane fabric finishing agents.

Key words: water-based polyurethane, functionalized graphene, composite coating, hydrophobicity, antistatic properties

中图分类号: 

  • TS195.5

图1

MPD-I-GO结构示意图"

图2

GO和MPD-I-GO的红外光谱图"

图3

GO和MPD-I-GO的Raman图"

图4

GO和MPD-I-GO的XRD图"

图5

GO和MPD-I-GO的XPS图"

图6

GO以及MPD-I-GO的扫描电镜照片(×1 000)"

图7

不同MPD-I-GO质量分数的复合乳液粒径图"

图8

不同MPD-I-GO质量分数的复合乳液TEM照片"

图9

WPU与MPD-I-GO/WPU乳胶膜的FT-IR图"

图10

不同MPD-I-GO质量分数的MPD-I-GO/WPU乳胶膜的水接触角"

图11

MPD-I-GO添加量为0%、0.18%复合乳胶膜的AFM分析谱图"

图12

不同MPD-I-GO质量分数的复合乳胶膜断面形貌图 (×200)"

图13

不同MPD-I-GO质量分数复合乳胶膜拉伸曲线"

图14

不同MPD-I-GO质量分数复合材料电阻率"

[1] 孙哲茹, 张庆乐, 郝林聪, 等. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(4):40-46.
SUN Zheru, ZHANG Qingle, HAO Lincong, et al. Preparation and performance of polyurethane /polydimethylsiloxane waterproof and moisture permeable membrane with star like topological geometry struc-ture[J]. Journal of Textile Research, 2022, 43(4): 40-46.
[2] 徐成书, 同晓妮, 蔡再生, 等. 线性聚醚嵌段氨基硅油改性水性聚氨酯抗起毛起球剂的合成及其应用[J]. 纺织学报, 2018, 39(9): 84-89.
XU Chengshu, TONG Xiaoni, CAI Zaisheng, et al. Synthesis and application of waterborne polyurethane anti-pilling agent modified by linear polyether-blocked amino silicone[J]. Journal of Textile Research, 2018, 39(9): 84-89.
[3] 马逸平, 樊武厚, 吴晋川, 等. 全水基杂化型无氟防水剂制备及其在涤/棉织物防水整理中应用[J]. 纺织学报, 2022, 43(2): 183-188.
MA Yiping, FAN Wuhou, WU Jinchuan, et al. Preparation and application of fully aqueous organic-inorganic hybrid fluorine-free water-repellant finishing agents[J]. Journal of Textile Research, 2022, 43(2): 183-188.
[4] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(3): 130-135.
DING Zihan, QIU Hua. Preparation and performance of nano-silica modified water-based polyurethane waterproof and moisture-permeable coated fabrics[J]. Journal of Textile Research, 2021, 42(3): 130-135.
[5] 贾子龙. 石墨烯的研究进展及展望[J]. 化工技术与开发, 2016, 45(3): 29-32, 46.
JIA Zilong. Research progress and prospect of gra-phene[J]. Technology & Development of Chemical Industry, 2016, 45(3): 29-32, 46.
[6] ZHANG Lin, DU Wenya, AMIT Nautiyal, et al. Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects[J]. Science China Materials, 2018, 61(3): 303-352.
doi: 10.1007/s40843-017-9206-4
[7] SMITH Andrew T, LACHANCE Anna Marie, ZENG Songshan, et al. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites[J]. Nano Materials Science, 2019, 1(1): 31-47.
doi: 10.1016/j.nanoms.2019.02.004
[8] 黄桂荣, 陈建. 石墨烯的合成与应用[J]. 炭素技术, 2009, 28(1): 35-39.
HUANG Guirong, CHEN Jian. Synthesis and application of graphene[J]. Carbon Techniques, 2009, 28(1): 35-39.
[9] WEI Yujie, YANG Ronggu. Nanomechanics of grap-hene[J]. National Science Review, 2019, 6(2): 324-348.
doi: 10.1093/nsr/nwy067
[10] 樊玮, 张超, 刘天西. 石墨烯/聚合物复合材料的研究进展[J]. 复合材料学报, 2013, 30(1): 14-21.
FAN Wei, ZHANG Chao, LIU Tianxi. Recent progress in graphene/polymer composites[J]. Acta Material Compositae Sinica, 2013, 30(1): 14-21.
[11] PEI Limin, LI Yufeng. Rapid and efficient intense pulsed light reduction of graphene oxide inks for flexible printed electronics[J]. RSC Advances, 2017, 7(81): 51711-51720.
doi: 10.1039/C7RA10416B
[12] 郑春森, 赵海平, 姚伯龙, 等. 功能石墨烯改性水性聚氨酯及其性能[J]. 复合材料学报, 2017, 34(12): 2643-2652.
ZHENG Chunsen, ZHAO Haiping, YAO Bolong, et al. Preparation and properties of functionalized graphene modified waterborne polyurethane[J]. Acta Material Compositae Sinica, 2017, 34 (12): 2643-2652.
[13] 潘龙, 刘一涛, 谢续明. 高性能石墨烯/聚合物纳米复合材料的研究进展—界面作用力的设计及其影响[J]. 高分子学报, 2014(6): 724-736.
PAN Long, LIU Yitao, XIE Xuming. Research progress of high performance graphene/polymer nanocomposites: design and influence of interfacial forces[J]. Acta Polymerica Sinica, 2014(6): 724-736.
[14] YU Bin, SHI Yongqian, YUAN Bihe, et al. Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocompo-sites[J]. Journal of Materials Chemistry A, 2015, 3:8034-8044.
doi: 10.1039/C4TA06613H
[15] 迟彩霞, 乔秀丽, 赵东江. 氧化-还原法制备石墨烯[J]. 化学世界, 2016, 57(4): 251-256.
CHI Caixia, QIAO Xiuli, ZHAO Dongjiang. Synthesis of graphene by oxidation-reduction method[J]. Chemical World, 2016, 57(4): 251-256.
[16] 孙瑞敏, 周永恒, 郝延蔚. 超支化聚合物改性氧化石墨烯研究应用进展[J]. 开封大学学报, 2019, 33(3): 94-96.
SUN Ruimin, ZHOU Yongheng, HAO Yanwei. Research and application progress of hyperbranched polymer modified graphene oxide[J]. Journal of Kaifeng University, 2019, 33(3): 94-96.
[17] WAN Ting, CHEN Dajun. Mechanical enhancement of self-healing waterborne polyurethane by graphene oxide[J]. Progress in Organic Coatings, 2018, 121: 73-79.
doi: 10.1016/j.porgcoat.2018.04.016
[18] KUMAR Mukesh, CHUNG Jin Suk, KONG Byung-seon, et al. Synthesis of graphene-polyurethane nanocomposite using highly functionalized graphene oxide as pseudo-crosslinker[J]. Materials Letters, 2013, 106: 319-321.
doi: 10.1016/j.matlet.2013.05.059
[19] 白静静, 尹建宇, 高雄. 异氰酸酯功能化氧化石墨烯/热塑性聚氨酯弹性体复合材料的制备与性能[J]. 复合材料学报, 2018, 35(7): 1683-1690.
BAI Jingjing, YIN Jianyu, GAO Xong. Preparation and characterization of isocyanate functionalized graphene oxide/thermoplastic polyurethane elastomer compo-sites[J]. Acta Material Compositae Sinica, 2018, 35(7): 1683-1690.
[20] 胡令, 蒋平平, 张萍波, 等. 氨基化石墨烯改性水性聚氨酯的合成及性能[J]. 精细化工, 2017, 34(1): 20-27,79.
HU Ling, JIANG Pingping, ZHANG Pingbo, et al. Synthesis and properties of waterborne polyurethane modified by aminated graphene[J]. Fine Chemicals, 2017, 34(1): 20-27, 79.
[21] LIARO Nikos, TUCEK Jiri, DIMOS Konstantinos, et al. The effect of the degree of oxidation on broadband nonlinear absorption and ferromagnetic ordering in graphene oxide[J]. Nanoscale, 2016, 8: 2908-2917.
doi: 10.1039/c5nr07832f pmid: 26780848
[22] 欧忠星, 郑玉婴, 肖东升, 等. 功能化改性还原氧化石墨烯-碳纳米管/热塑性聚氨酯复合材料膜的制备及性能[J]. 复合材料学报, 2016, 33(3): 486-494.
OU Zhongxing, ZHENG Yuying, XIAO Dongsheng, et al. Preparation and properties of functionalized modified reduced graphene oxide carbon nanotubes/thermoplastic polyurethane composite films[J]. Acta Material Compositae Sinica, 2016, 33(3): 486-494.
[23] YANG Dongxin, VELAMAKANNI Aruna, BOZOKLU Gülay, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy[J]. Carbon, 2009, 47(1): 145-152.
doi: 10.1016/j.carbon.2008.09.045
[1] 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10.
[2] 孙国强, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 内交联型自消光水性聚氨酯树脂的制备及其性能[J]. 纺织学报, 2023, 44(07): 151-158.
[3] 庞明科, 王淑花, 史晟, 薛立钟, 郭红, 高承永, 卢建军, 赵晓婉, 王子涵. 废旧聚对苯二甲酸乙二醇酯纤维醇解制备阻燃水性聚氨酯及其应用[J]. 纺织学报, 2023, 44(02): 214-221.
[4] 王菊, 张丽平, 王晓春, 杨萌阳. 高疏水性染料的制备及其对超高分子量聚乙烯织物的染色性能[J]. 纺织学报, 2022, 43(04): 97-101.
[5] 解开放, 罗凤香, 包新军, 周衡书, 徐广标. 高耐磨性复合涂层涤纶通丝的制备及其性能[J]. 纺织学报, 2022, 43(03): 123-131.
[6] 谢爱玲, 乐昱含, 艾馨, 王亚辉, 王义容, 陈新彭, 陈国强, 邢铁玲. 茶多酚改性超疏水涤纶织物制备及其在油水分离中的应用[J]. 纺织学报, 2022, 43(02): 162-170.
[7] 马逸平, 樊武厚, 吴晋川, 蒲宗耀. 全水基杂化型无氟防水剂制备及其在涤/棉织物防水整理中应用[J]. 纺织学报, 2022, 43(02): 183-188.
[8] 陈莹, 方浩霞. 疏水性导电聚吡咯整理棉织物的制备及其性能[J]. 纺织学报, 2021, 42(10): 115-119.
[9] 刘淑强, 靖逸凡, 杨雅茹, 吴改红, 余娟娟, 王凯文, 李惠敏, 李甫, 张曼. 自修复双层微胶囊的制备及其在玄武岩织物上的应用[J]. 纺织学报, 2021, 42(04): 127-131.
[10] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135.
[11] 王迎, 王怡婷, 吴佳庆, 郭亚飞, 郝新敏. 生物基锦纶56用抗静电纺丝油剂的复配及其对短纤维可纺性的影响[J]. 纺织学报, 2021, 42(01): 84-89.
[12] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[13] 隋智慧, 伞景龙, 王旭, 常江, 吴学栋, 祖彬. 纳米ZnO/有机氟硅改性聚丙烯酸酯乳液的合成及应用[J]. 纺织学报, 2020, 41(04): 84-90.
[14] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111.
[15] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!