纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 234-241.doi: 10.13475/j.fzxb.20220307102

• 综合述评 • 上一篇    下一篇

相变冷却服热湿传递模型构建及其应用的研究进展

吴珺秋1, 李俊1,2,3(), 王敏1,2   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.现代服装设计与技术教育部重点实验室(东华大学), 上海 200051
    3.上海市纺织智能制造与工程一带一路国际联合实验室, 上海 200051
  • 收稿日期:2022-03-21 修回日期:2022-10-25 出版日期:2023-08-15 发布日期:2023-09-21
  • 通讯作者: 李俊(1970—),男,教授,博士。主要研究方向为服装舒适性与功能防护服装。E-mail:lijun@dhu.edu.cn
  • 作者简介:吴珺秋(1998—),女,硕士生。主要研究方向为服装舒适性与功能防护服装。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2232022G-08);上海市科学技术委员会“科技创新行动计划”“一带一路”国际合作项目(21130750100)

Research progress in heat and moisture transfer model construction and application of cooling clothing incorporated with phase change materials

WU Junqiu1, LI Jun1,2,3(), WANG Min1,2   

  1. 1. College of Fashion and Design,Donghua University, Shanghai 200051,China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Shanghai 200051, China
  • Received:2022-03-21 Revised:2022-10-25 Published:2023-08-15 Online:2023-09-21

摘要:

为探究人体与相变冷却服之间的热湿传递机制,完善相变冷却服热湿传递模型的构建,回顾了相变冷却服热湿传递模型的相关研究。在剖析相变冷却服中热湿传递方式与路径的基础上,着重分析了当前其热湿传递模型研究的发展过程、特点和不足,并讨论了热湿传递模型在相变冷却服开发与性能优化方面的应用现状。认为目前针对相变冷却服的模型构建已从干热传递模型发展到热湿耦合传递模型,但仍存在简化热湿传递和通风过程,以及未考虑织物内部结构等微观因素对于相变冷却服热湿性能影响等不足,未来的相关研究工作可以考虑热湿传递的多因素耦合、冷却服内通风过程的动态模拟以及模型构建从一维到多维、从宏观到微观的转变。

关键词: 冷却服, 相变材料, 热传递, 湿传递, 热湿传递模型

Abstract:

Significance Cooling clothing incorporated with phase change materials (PCMs) can provide thermal protection to the human body in extreme hot environments. Due to the capability of PCMs absorbing or releasing heat through phase change, heat transfer process of PCM clothing calls for comprehensive understanding. The poor moisture permeability and low surface temperature of the PCMs would not only impede water vapor transmission to the environment, but also increase the risk of moisture condensation, which makes the construction of heat and moisture transfer model of PCM clothing more complicated than that of ordinary clothing. Based on the analysis of the heat and moisture transfer mode and path in PCM clothing, the development process, characteristics and deficiencies of current heat and moisture transfer model were reviewed in this paper. The application status of heat and moisture transfer model in the development and performance optimization of PCM clothing was also discussed.

Progress At present, the development process of the model construction of PCM clothing was mainly divided into three stages (Tab. 1). In the first stage, the heat transfer model of the fabric-PCM was established with the enthalpy method. However, it was different from the actual heat transfer process because it neglected the effect of moisture transfer on energy conversion. In the second stage, the coupled heat and moisture transfer model of the fabric-PCM was established with the apparent heat capacity method, which considered the phase change during moisture transfer and its influence on energy conversion. In the third stage, the more complex coupled heat and moisture transfer model was established by using some optimized methods. For example, adding the solid desiccant layer onto the inner surface of PCMs to maintain dry cool microclimate air, placing the insulation layer onto the outer surface of PCMs to reduce the heat absorption from the hot environment, and adding the ventilation fan to enhance sweat evaporation. In addition, the established model was used for parametric study to provide suggestions for the development and performance optimization of PCM clothing. In the selection of PCMs, it was proposed to adjust the melting temperature, weight and distribution of PCMs according to the ambient temperature, working time and human physiological characteristics. When designing the working mode of ventilation fans, it was necessary to set the running time point of ventilation fans according to the human activity level or sweat production.

Conclusion and Prospect Although the model construction of PCM clothing has been developed from the heat transfer model to the coupled heat and moisture transfer model, problems exist. Firstly, existing models simplifies the air ventilation by fans as the air exchange between the clothing microclimate layer and the environment, and the air velocity and air layer thickness of each segment are regarded as uniformly distributed, so the influence of air ventilation on heat transfer is ignored. Then, due to the complexity of the radiative heat transfer process, existing models ignore or simplify the radiative heat transfer among human body, PCM clothing and environment. Besides, existing models regard the fabric as a porous medium with uniform thickness, and do not consider the influence of microcosmic factors such as fiber hygroscopic characteristics, yarn structure and the mixing ratio of each component in the cavities of the inner fabric layer on the thermal and humidity properties of PCM clothing. The future development trend is put forward as the multi-factor coupling of heat and moisture transfer, the dynamic simulation of air ventilation by fans, and the model construction changes from one dimension to multi-dimension and from macroscopic to microscopic.

Key words: numerical simulation, personal cooling clothing, phase change materials, heat transfer, moisture transfer

中图分类号: 

  • TS941.73

图1

冷却服"

图2

人体-冷却服-环境系统内热传递"

图3

人体-冷却服-环境系统内湿传递"

表1

模型研究发展过程"

文献 相变过程
建模方法
模型特点 重要结论和意义 模型存在的不足 时间
[25] 焓法 相变材料
干热传递模型
不需要将液相、固相及两相移动界面分开处理 未考虑服装热阻对导热过程的影响 2011年
[26] 焓法 织物-相变材料
干热传递模型
采用软件建模,可重复性高,适用于研究模型的影响因素 仅考虑传导散热 2015年
[28] 显热容法 织物-相变材料
热湿耦合传递模型
可利用模型预测冷却服中各层的温度和蒸汽压 未考虑水分相态变化引起的能量交换 2016年
[29] 显热容法 织物-相变材料
热湿耦合传递模型
考虑了水蒸气在相变材料表面冷凝释放的热量 冷凝位置未考虑全面 2016年
[31] 显热容法 织物-相变材料-干燥剂
热湿耦合传递模型
考虑了干燥剂吸附热及相变材料、干燥剂与贴身织物之间的辐射热传递 湿传递和热湿耦合传递未考虑全面 2018年
[22] 显热容法 织物-相变材料-风扇
热湿耦合传递模型
完善了不同水分传递形式时皮肤与贴身织物之间的热湿传递过程 仅考虑风扇驱动的强制对流,忽略了浮升力引发的自然对流 2018年
[15] 显热容法 织物-相变材料-风扇
热湿耦合传递模型
方程适用于任意层,较为简洁 认为各节段的空气流速和空气层厚度呈均匀分布 2018年
[32] 显热容法 织物-相变材料-隔热层-
风扇热湿耦合传递模型
减少了熔化过程中吸收的环境热量 将通风过程简化为衣下微气候与环境之间的空气交换 2018年
[1] 王敏, 李俊. 衣下空间作用机制与防护服舒适性[J]. 中国个体防护装备, 2009(5): 18-21.
WANG Min, LI Jun. The effect mechanism of the space under clothes and the comfort of protective clothes[J]. China Personal Protective Equipment, 2009(5): 18-21.
[2] WANG F, DEI FERRARO S, MOLINARO V, et al. Assessment of body mapping sportswear using a manikin operated in constant temperature mode and thermoregulatory model control mode[J]. International Journal of Biometeorology, 2014, 58(7): 1673-1682.
doi: 10.1007/s00484-013-0774-4 pmid: 24357489
[3] FAN J T, CHENG X, WEN X, et al. An improved model of heat and moisture transfer with phase change and mobile condensates in fibrous insulation and comparison with experimental results[J]. International Journal of Heat and Mass Transfer, 2004, 47(10/11): 2343-2352.
doi: 10.1016/j.ijheatmasstransfer.2003.10.033
[4] XU D H, MEIBAO B G, ZHANG H L. Numerical solution of a dynamic model of heat and moisture transfer in porous fabric under low temperature[J]. International Journal of Heat and Mass Transfer, 2013, 61: 149-157.
doi: 10.1016/j.ijheatmasstransfer.2013.01.045
[5] SUN Y, JASPER W J. Numerical modeling of heat and moisture transfer in a wearable convective cooling system for human comfort[J]. Building and Environment, 2015, 93: 50-62.
doi: 10.1016/j.buildenv.2015.06.008
[6] SU Y, HE J, LI J. An improved model to analyze radiative heat transfer in flame-resistant fabrics exposed to low-level radiation[J]. Textile Research Journal, 2017, 87(16): 1953-1967.
doi: 10.1177/0040517516660892
[7] 卢琳珍, 徐定华, 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(1):111-118.
LU Linzhen, XU Dinghua, XU Yinghong. Prediction of skin injury degree based on modified model of heat transfer in three-layered thermal protective clothing[J]. Journal of Textile Research, 2018, 39(1): 111-118.
[8] PUSZKARZ A K, KORYCKI R, KRUCINSKA I. Simulations of heat transport phenomena in a three-dimensional model of knitted fabric[J]. Autex Research Journal, 2016, 16(3): 128-137.
doi: 10.1515/aut-2015-0042
[9] CHOUDHARY B, WANG F, KE Y, et al. Development and experimental validation of a 3D numerical model based on CFD of the human torso wearing air ventilation clothing[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118973.
doi: 10.1016/j.ijheatmasstransfer.2019.118973
[10] ZHU Q Y, LI Y. Numerical simulation of the transient heat and liquid moisture transfer through porous textiles with consideration of electric double layer[J]. International Journal of Heat and Mass Transfer, 2010, 53(7/8): 1417-1425.
doi: 10.1016/j.ijheatmasstransfer.2009.12.014
[11] 盛伟, 郑海坤. 人体降温服在矿井热环境中的应用综述[J]. 中国安全生产科学技术, 2013, 9(12): 95-101.
SHENG Wei, ZHENG Haikun. Literature review on application of body cooled suits in mine thermal environment[J]. Journal of Safety Science and Technology, 2013, 9(12): 95-101.
[12] 郑晴, 王宏付, 柯莹, 等. 相变降温矿工服的设计与评价[J]. 纺织学报, 2020, 41(3): 124-129.
ZHENG Qing, WANG Hongfu, KE Ying, et al. Design and evaluation of cooling clothing by phase change materials for miners[J]. Journal of Textile Research, 2020, 41(3): 124-129.
[13] ZHAO M, GAO C, LI J. Effects of two cooling garments on post-exercise thermal comfort of female subjects in the heat[J]. Fiber and Polymers, 2015, 16(6):1403-1409.
doi: 10.1007/s12221-015-1403-0
[14] ZHAO M, GAO C, WANG F, et al. The torso cooling of vests incorporated with phase change materials: a sweat evaporation perspective[J]. Textile Research Journal, 2013, 83(4): 418-425.
doi: 10.1177/0040517512460294
[15] WAN X, WANG F. Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans[J]. International Journal of Heat and Mass Transfer, 2018, 126: 636-648.
doi: 10.1016/j.ijheatmasstransfer.2018.05.155
[16] WANG F, KE Y, YANG B, et al. Effect of cooling strategies on overall performance of a hybrid personal cooling system incorporated with phase change materials (PCMs) and electric fans[J]. Journal of Thermal Biology, 2020, 92: 102655.
doi: 10.1016/j.jtherbio.2020.102655
[17] YI W, ZHAO Y, CHAN A P C. Evaluating the effectiveness of cooling vest in a hot and humid environment[J]. Annals of Work Exposures and Health, 2017, 61(4): 481-494.
doi: 10.1093/annweh/wxx007 pmid: 28355411
[18] 韦帆汝, 王发明. 基于相变材料与微型通风风扇的新型个体混合冷却服在温热环境下的制冷效果研究[J]. 丝绸, 2016, 53(3): 1-8.
WEI Fanru, WANG Faming. The cooling performance of a portable hybrid personal cooling system (PCS) based on phase change materials and micro-ventilation fans in a warm environment[J]. Journal of Silk, 2016, 53(3): 1-8.
[19] LAI D, WEI F, LU Y, et al. Evaluation of a hybrid personal cooling system using a manikin operated in constant temperature mode and thermoregulatory model control mode in warm conditions[J]. Textile Research Journal. 2017, 87(1): 46-56.
doi: 10.1177/0040517515622152
[20] 何骞. 基于相变材料的个体冷却服及其降温性能研究[D]. 西安: 西安科技大学, 2018: 1-92.
HE Qian. Study on personal cooling garment based on phase change materials and its cooling performance[D]. Xi'an: Xi'an University of Science and Technology, 2018: 1-92.
[21] 苏云, 王云仪, 李俊. 消防服衣下空气层热传递机制研究进展[J]. 纺织学报, 2016, 37(1):167-172.
SU Yun, WANG Yunyi, LI Jun. Research progress of heat transfer mechanism of air gap under firefighter protective clothing[J]. Journal of Textile Research, 2016, 37(1):167-172.
[22] BACHNAK R, ITANI M, GHADDAR N, et al. Performance of hybrid PCM-fan vest with deferred fan operation in transient heat flows from active human in hot dry environment[J]. Building and Environment, 2018, 144: 334-348.
doi: 10.1016/j.buildenv.2018.08.054
[23] 颜奥林. 纺织品热湿舒适性能测试及综合评价[D]. 无锡: 江南大学, 2020: 1-64.
YAN Aolin. Testing and comprehensive evaluation of textile thermal and wet comfort performance[D]. Wuxi: Jiangnan University, 2020: 1-64.
[24] 师琅. 织物热湿传递测评及模型研究进展[J]. 针织工业, 2020(5): 82-87.
SHI Lang. Research progress of the heat and moisture performance evaluation and modeling of fabrics[J]. Knitting Industries, 2020(5): 82-87.
[25] QIU Y F, JIANG N, WEI W U, et al. Heat transfer of heat sinking vest with phase-change material[J]. Chinese Journal of Aeronautics, 2011, 24(6): 720-725.
doi: 10.1016/S1000-9361(11)60084-8
[26] MOKHTARI YAZDI M, SHEIKHZADEH M, BORHANI S. Modeling the heat transfer in a PCM cooling vest[J]. The Journal of The Textile Institute, 2015, 106(9): 1003-1012.
doi: 10.1080/00405000.2014.959800
[27] MARIN J M, ZALBA B, CABEZA L F. Determination of enthalpy-temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties[J]. Measurement Science and Technology, 2003, 14(2): 184-189.
doi: 10.1088/0957-0233/14/2/305
[28] HAMDAN H, GHADDAR N, OUAHRANI D, et al. PCM cooling vest for improving thermal comfort in hot environment[J]. International Journal of Thermal Sciences, 2016, 102: 154-167.
doi: 10.1016/j.ijthermalsci.2015.12.001
[29] ITANI M, OUAHRANI D, GHADDAR N, et al. The effect of PCM placement on torso cooling vest for an active human in hot environment[J]. Building and Environment, 2016, 107: 29-42.
doi: 10.1016/j.buildenv.2016.07.018
[30] ITANI M, GHADDAR N, GHALI K, et al. Cooling vest with optimized PCM arrangement targeting torso sensitive areas that trigger comfort when cooled for improving human comfort in hot conditions[J]. Energy and Buildings, 2017, 139: 417-425.
doi: 10.1016/j.enbuild.2017.01.036
[31] ITANI M, GHADDAR N, GHALI K. Innovative PCM-desiccant packet to provide dry microclimate and improve performance of cooling vest in hot environ-ment[J]. Energy Conversion and Management, 2017, 140: 218-227.
doi: 10.1016/j.enconman.2017.03.011
[32] KANG Z, WAN X, WANG F. A new hybrid personal cooling system (HPCS) incorporating insulation pads for thermal comfort management: experimental validation and parametric study[J]. Building and Environment, 2018, 145: 276-289.
doi: 10.1016/j.buildenv.2018.09.033
[33] ISMAIL N, GHADDAR N, GHALI K. Predicting segmental and overall ventilation of ensembles using an integrated bioheat and clothed cylinder ventilation models[J]. Textile Research Journal, 2014, 84(20): 2198-2213.
doi: 10.1177/0040517514535868
[34] SANTOS M S, OLIVEIRA D, CAMPOS J, et al. Numerical analysis of the flow and heat transfer in cylindrical clothing microclimates-Influence of the microclimate thickness ratio[J]. International Journal of Heat and Mass Transfer, 2018, 117: 71-79.
doi: 10.1016/j.ijheatmasstransfer.2017.09.102
[35] 华征. 基于人体生理参数的热舒适综合评价及应用[D]. 重庆: 重庆大学, 2012: 1-86.
HUA Zheng. Thermal comfort comprehensive evaluation and application based on the physiological para-meters[D]. Chongqing: Chongqing University, 2012: 1-86.
[36] KARAKI W, GHADDAR N, GHALI K, et al. Human thermal response with improved AVA modeling of the digits[J]. International Journal of Thermal Sciences, 2013, 67: 41-52.
doi: 10.1016/j.ijthermalsci.2012.12.010
[37] ZHANG H, HUIZENGA C, ARENS E, et al. Thermal sensation and comfort in transient non-uniform thermal environments[J]. European Journal of Applied Physiology, 2004, 92(6): 728-733.
pmid: 15221406
[38] ZHENG Q, KE Y, WANG H. Design and evaluation of cooling workwear for miners in hot underground mines using PCMs with different temperatures[J]. International Journal of Occupational Safety and Ergonomics, 2020, 28(1): 118-128.
doi: 10.1080/10803548.2020.1730618
[39] ITANI M, GHADDAR N, OUAHRANI D, et al. An optimal two-bout strategy with phase change material cooling vests to improve comfort in hot environment[J]. Journal of Thermal Biology, 2018, 72: 10-25.
doi: S0306-4565(17)30380-7 pmid: 29496002
[40] MOKHTARI YAZDI M, SHEIKHZADEH M, DABIRZADEH A, et al. Modeling the efficiency and heat gain of a phase change material cooling vest: the effect of ambient temperature and outer isolation[J]. Journal of Industrial Textiles, 2016, 46(2): 436-454.
doi: 10.1177/1528083715589746
[41] ITANI M, GHADDAR N, GHALI K, et al. Significance of PCM arrangement in cooling vest for enhancing comfort at varied working periods and climates: modeling and experimentation[J]. Applied Thermal Engineering, 2018, 145: 772-790.
doi: 10.1016/j.applthermaleng.2018.09.057
[42] TANABE S, KOBAYASHI K, NAKANO J, et al. Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD)[J]. Energy and Building, 2002, 34(6): 637-646.
doi: 10.1016/S0378-7788(02)00014-2
[43] WANG F, SONG W, KE Y, et al. Performance enhancement of hybrid personal cooling clothing in a hot environment: PCM cooling energy management with additional insulation[J]. Ergonomics, 2019, 62(7): 928-939.
doi: 10.1080/00140139.2019.1596318 pmid: 30885053
[44] SONG W, WANG F. The hybrid personal cooling system (PCS) could effectively reduce the heat strain while exercising in a hot environment[J]. Ergonomics, 2016, 59(8): 1009-1018.
doi: 10.1080/00140139.2015.1105305
[45] ITANI M, BACHNAK R, GHADDAR N, et al. Evaluating performance of hybrid PCM-fan and hybrid PCM-desiccant vests in moderate and hot climates[J]. Journal of Building Engineering, 2019, 22: 383-396.
doi: 10.1016/j.jobe.2019.01.003
[1] 刘雨婷, 宋泽涛, 赵胜男, 王星岚, 常素芹. 个体冷却服的研究现状与发展趋势[J]. 纺织学报, 2023, 44(12): 233-241.
[2] 杨孟想, 刘让同, 李亮, 刘淑萍, 李淑静. 机织物的热传递与强热条件下热防护性能[J]. 纺织学报, 2023, 44(11): 74-82.
[3] 刘广菊, 苏云, 田苗, 李俊. 电加热鞋帮二维瞬态传热模型及其实验验证[J]. 纺织学报, 2023, 44(10): 127-133.
[4] 朱晓荣, 向攸慧, 何佳臻, 翟丽娜. 低辐射热条件下附加相变材料织物的蓄放热双重特性[J]. 纺织学报, 2023, 44(06): 152-160.
[5] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[6] 吴佳玥, 吴巧英. 羽绒制品热传递的有限元仿真[J]. 纺织学报, 2022, 43(11): 154-162.
[7] 吴黛唯, 黄家成, 王云仪. 服装形变对羽绒服隔热能力的影响[J]. 纺织学报, 2022, 43(09): 167-174.
[8] 朱晓荣, 何佳臻, 王敏. 相变材料在热防护服上的应用研究进展[J]. 纺织学报, 2022, 43(04): 194-202.
[9] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[10] 张文欢, 李俊. 低热辐射环境中消防服系统内热传递机制的研究进展[J]. 纺织学报, 2021, 42(10): 190-198.
[11] 蒋璐璐, 邓梦, 王云仪, 李俊. 气凝胶材料在消防服中的应用研究进展[J]. 纺织学报, 2021, 42(09): 187-194.
[12] 王小波, 钱晓明, 王立晶, 刘永胜, 白赫. 液体冷却服研究进展及消防应用可行性研究[J]. 纺织学报, 2021, 42(06): 198-207.
[13] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[14] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[15] 郑晴, 王宏付, 柯莹, 李爽. 相变降温矿工服的设计与评价[J]. 纺织学报, 2020, 41(03): 124-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!