纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 34-40.doi: 10.13475/j.fzxb.20220306001

• 纤维材料 • 上一篇    下一篇

胶原蛋白肽/聚乙二醇共混静电纺纳米纤维膜的制备及其性能

刘星辰, 钱永芳(), 吕丽华, 王迎   

  1. 大连工业大学 纺织与材料工程学院, 辽宁 大连 116034
  • 收稿日期:2022-03-17 修回日期:2022-05-30 出版日期:2023-08-15 发布日期:2023-09-21
  • 通讯作者: 钱永芳(1982—),女,副教授,博士。主要研究方向为静电纺纳米纤维及其功能性开发。E-mail: qianyf@dlpu.edu.cn
  • 作者简介:刘星辰(1997—),女,硕士生。主要研究方向为静电纺生物医用材料。
  • 基金资助:
    大连市科技创新基金项目(2019J12SN71)

Fabrication and properties of electrospun nanofibrous membranes from blending collagen peptides/polyethylene glycol

LIU Xingchen, QIAN Yongfang(), LÜ Lihua, WANG Ying   

  1. College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
  • Received:2022-03-17 Revised:2022-05-30 Published:2023-08-15 Online:2023-09-21

摘要:

为解决胶原蛋白肽(COP)纺丝困难的问题,以60%甲酸为溶剂,将COP和聚乙二醇(PEG)共混形成纺丝液,通过静电纺丝制备了COP/PEG纳米纤维膜。借助扫描电子显微镜、傅里叶变换红外光谱仪、差示扫描量热仪和X射线衍射仪对纳米纤维膜的形貌、分子间作用力、热性能进行表征。结果表明:纯COP通过静电纺丝难以得到成形良好的纳米纤维;添加PEG进行共混纺丝后,随着COP质量分数的增加,纳米纤维的均匀性得以提升,可改善COP难纺丝的问题,在添加质量分数为20% COP时,COP/PEG纳米纤维的平均直径为308 nm,分子间氢键相对强度为52.42%,结晶度也达到最大值62.53%,熔融焓为55.81 J/g。

关键词: 静电纺丝, 胶原蛋白肽, 聚乙二醇, 纳米纤维, 可纺性

Abstract:

Objective Collagen peptide (COP) is a small molecular weight polypeptide with excellent solubility, but is difficult in filament formation compared with collagen. In this study, polyethylene glycol (PEG) was incorporated with COP, aiming to improve the poor spinnability of COP.

Method COP was blended with PEG to form the spinning solution with 60% formic acid as solvent. The surface tension and conductivity properties of the solution were measured by a tensiometer and conductivity meter. Scanning electron microscope was utilized to observe the surface morphology of the electrospun nanofibers. The interaction between COP and PEG was analyzed by Fourier transform infrared spectroscope, and the positions and strength distributions of different types of hydrogen bonds were fitted by the Gaussian method in the range of 3 000-3 600 cm-1. The fibrous membranes' thermal characteristics and crystalline structure were also examined using differential scanning calorimeter and X-ray diffractometer(XRD), respectively.

Results By testing the solution properties of different COP mass fraction blended spinning solutions, it was found that the electrical conductivity and surface tension increased with the increase of COP mass fraction (Tab. 1). The incorporation of PEG improved the spinnability of COP obviously (Fig.1). The average diameter of fibers increased with COP mass fraction increasing and became most uniform when the COP content reached 20%. Moreover, when the mass fraction of COP is 12%, 16%, 20% and 24%, the average diameter of the fiber is 173, 205, 308, 319 nm respectively (Fig.2). FT-IR spectrum Gaussian fitting results showed that COP and PEG formed hydrogen bond, and the intramolecular hydrogen bond decreased while intermolecular hydrogen bond increased. It was discovered that the intramolecular hydrogen bond contact was primarily of OH … OH interaction, with some occurring as cyclic polymers, while the intermolecular hydrogen bond had a variety of OH … O, OH … N and OH … π interactions (Fig.3 and Tab.2). During electrospinning, the endothermic peak of the nanofiber membrane occured at 88 ℃, but the endothermic peaks for COP and PEG were at 100 ℃ and 72 ℃, respectively (Fig.4). From the XRD curves and statistical results of relative crystallinity of COP, PEG and nanofibrous membranes, it was found that COP at 2θ of 21.6° with a broad peak, PEG at 2θ of 19.2° and 23.4°, respectively, had one crystal diffraction peak, and 2θ exhibited a smaller peak in the 26°-28° range (Fig. 5). The nanofiber membrane, there were broad peaks representing COP and crystal diffraction peaks of PEG, respectively, with the addition of COP, the strength increases, and the crystallinity of the fiber membrane after electrospinning also increased (Tab.3).

Conclusion It was difficult to obtain well formed nanofibers by electrospinning using pure COP, but the addition of PEG was shown to have improved the poor spinnability of COP. The effect of the size of its mass fraction on the surface tension of the spinning fluid fluctuated in a small range due to the low COP molecular weight, while the conductivity increased with increasing COP mass fraction. When the COP mass fraction was 20%, the electrospun fibers exhibit uniform morphology, the relative strength of intermolecular hydrogen bonding was 52.42%, and the crystallinity also reached a maximum (62.53%) with a melting enthalpy of 55.81 J/g. PEG and COP formed hydrogen bond when the solutions were mixed. It is found that after electrospinning the intramolecular hydrogen bond of the fiber membrane decreases, while the intermolecular hydrogen bond increases.

Key words: electrospinning, collagen peptide, polyethylene glycol, nanofiber, spinnability

中图分类号: 

  • TS171

表1

不同COP质量分数纺丝液的溶液性质"

COP质量分数/% 电导率/(mS·cm-1) 表面张力/(mN·m-1)
12 8.67±0.015 48.39±0.087
16 9.32±0.013 48.43±0.102
20 9.53±0.008 48.47±0.100
24 10.05±0.011 48.52±0.233

图1

纯COP纳米纤维膜扫描电镜照片(×5 000)"

图2

不同COP质量分数COP/PEG纳米纤维膜扫描电镜照片及直径分布图"

图3

红外光谱和不同氢键类型拟合曲线图"

表2

COP、PEG及纳米纤维膜不同类型氢键高斯拟合结果"

样品 氢键类型 峰位/
cm-1
相对
强度/
%
相对强
度合
计/%
COP 分子内
氢键
(Ⅱ)OH…OH 3 425 36.08 58.29
(Ⅳ)环状聚合物 3 203 22.21
分子间
氢键
(Ⅲ)OH…O(醚) 3 310 27.93 41.71
(Ⅴ)OH…N 3 068 6.02
(Ⅰ)OH…π 3 532 7.76
PEG 分子内
氢键
(Ⅱ)OH…OH 3 373 16.00 48.73
(Ⅳ)环状聚合物 3 205 32.73
分子间
氢键
(Ⅲ)OH…O(醚) 3 302 28.60 51.20
(Ⅴ)OH…N 3 104 17.73
(Ⅰ)OH…π 3 461 4.92
纳米纤
维膜
分子内
氢键
(Ⅱ)OH…OH 3 433 44.43 47.58
(Ⅳ)环状聚合物 3 184 3.15
分子间
氢键
(Ⅲ)OH…O(醚) 3 276 37.33 52.42
(Ⅴ)OH…N 3 074 8.33
(Ⅰ)OH…π 3 538 6.76

图4

COP、PEG及纳米纤维膜的DSC曲线"

表3

COP、PEG及不同COP质量分数纤维膜结晶度"

COP质量分数/% 非结晶峰面积 结晶峰面积 相对结晶度/%
12 75.07 87.34 53.78
16 69.89 101.57 59.24
20 68.45 114.24 62.53
24 70.94 109.77 60.74
COP 15.59 26.94 63.34
PEG 95.57 90.17 48.55

图5

COP、PEG及COP/PEG纳米纤维膜的X射线衍射图"

[1] 赵婷婷, 张玉梅, 崔峥嵘, 等. 纳米纤维的技术进展[J]. 产业用纺织品, 2003, 21(10):5.
ZHAO Tingting, ZHANG Yumei, CUI Zhengrong, et al. Technology development of nanofibers[J]. Technical Textiles, 2003, 21(10):5.
[2] TUCKER N, STANGER J J, STAIGER M P, et al. The history of the science and technology of electrospinning from 1600 to 1995[J]. Journal of Engineered Fibers and Fabrics, 2012, 7(2):63-73.
[3] XUE Jiajia, WU Tong, DAI Yunqian, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews, 2019, 119 (8):5298-5415.
doi: 10.1021/acs.chemrev.8b00593 pmid: 30916938
[4] HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003, 63(15):2223-2253.
doi: 10.1016/S0266-3538(03)00178-7
[5] GEORGE A, SANJAY M R, SRISUK R, et al. A comprehensive review on chemical properties and applications of biopolymers and their composites[J]. International Journal of Biological Macromolecules, 2020, 154:329-338.
doi: S0141-8130(20)31239-3 pmid: 32179114
[6] SUN S S, GAO Y H, CHEN J D, et al. Identification and release kinetics of peptides from tilapia skin collagen during alcalase hydrolysis[J]. Food Chemistry, 2022.DOI:10.1016/j.foodchem.2022.132089.
doi: 10.1016/j.foodchem.2022.132089
[7] 李选. 胶原/壳聚糖复合抗菌敷料膜的制备与表征[D]. 上海: 东华大学, 2017:6.
LI Xuan. Preparation and characterization of collagen/chitosan composite antibacterial wound dressing[D]. Shanghai: Donghua University, 2017:6.
[8] 陈燕, 郭蕴仪, 高晶, 等. 胶原/聚氧化乙烯复合微纳米纤维的静电纺制备及表征[J]. 东华大学学报(自然科学版), 2014, 40(6):739-743,772.
CHEN Yan, GUO Yunyi, GAO Jing, et al. Preparation and characterization of electrospun collagen/PEO composite micro-nanofiber[J]. Journal of Donghua University(Natural Science), 2014, 40(6):739-743,772.
[9] ZHAO Xiaocao, ZHANG Xuejiao, LIU Dengyong. Collagen peptides and the related synthetic peptides: a review on improving skin health[J]. Journal of Functional Foods, 2021, 86:2223-2253.
[10] 卢伟鹏, 徐海涛, 张兵, 等. 胶原蛋白肽/壳寡糖复合纳米纤维的螺旋电纺制备及结构性质分析[J]. 明胶科学与技术, 2014, 34(1):30-36.
LU Weipeng, XU Haitao, ZHANG Bing, et al. Helical electrospun fabrication and structural property analysis of collagen peptide/chitosan composite nanofibers[J]. The Science and Technology of Gelatin, 2014, 34(1):30-36.
[11] SEONG-BEOM H, BADA W, SEUNG-CHAN Y, et al. Asterias pectinifera derived collagen peptide-encapsulating elastic nanoliposomes for the cosmetic application[J]. Journal of Industrial and Engineering Chemistry, 2021, 98:289-297.
doi: 10.1016/j.jiec.2021.03.039
[12] LU Sitong, KONG Songzhi, WANG Ye, et al. Gastric acid-response chitosan/alginate/tilapia collagen peptide composite hydrogel: protection effects on alcohol-induced gastric mucosal injury[J]. Carbohydrate Polymers, 2022.DOI:10.1016/j.carbpol.2021.118816.
doi: 10.1016/j.carbpol.2021.118816
[13] 黄艳萍, 但年华, 但卫华. 静电纺丝制备胶原基复合纳米医用纤维的研究进展[J]. 材料导报, 2019, 33(19):3322-3327.
HUANG Yanping, DAN Nianhua, DAN Weihua. Promising biomedical material based on collagen composite electrospun nanofibers: a review[J]. Materials Reports, 2019, 33(19):3322-3327.
[14] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(9):167-173.
PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold[J]. Journal of Textile Research, 2020, 41(9):167-173.
doi: 10.1177/004051757104100213
[15] TAN H L, DAN K, PASBAKHSH P, et al. Electrospun cellulose acetate butyrate/polyethylene glycol (CAB/PEG) composite nanofibers: a potential scaffold for tissue engineering[J]. Colloids and Surfaces B: Biointerfaces, 2020.DOI:10.1016/j.colsurfb.2019.110713.
doi: 10.1016/j.colsurfb.2019.110713
[16] HUANG B H, LI S Y, CHIOU Y J, et al. Electrophoretic fabrication of a robust chitosan/polyethylene glycol/polydopamine composite film for UV-shielding application[J]. Carbohydrate Polymers, 2021. DOI: 10.1016/j.carbpol.2021.118560.
doi: 10.1016/j.carbpol.2021.118560
[17] HU F, LU H L, YE Z S, et al. Slow-release lubrication of artificial joints using self-healing polyvinyl alcohol/ polyethylene glycol/graphene oxide hydrogel[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021. DOI:10.1016/j.jmbbm.2021.104807.
doi: 10.1016/j.jmbbm.2021.104807
[18] SETTIMIO P, LAURA D M, PATRIZIA P, et al. Dextran-polyethylene glycol cryogels as spongy scaffolds for drug delivery[J]. International Journal of Biological Macromolecules, 2020, 166:1292-1300.
doi: 10.1016/j.ijbiomac.2020.10.273
[19] KE W C, LI X, MIAO M Y, et al. Fabrication and properties of electrospun and electrosprayed polyethylene glycol/polylactic acid (PEG/PLA) films[J]. Coatings, 2021.DOI:10.3390/coatings11070790.
doi: 10.3390/coatings11070790
[20] 左晓飞, 张娇娇, 余改丽, 等. 溶液性质交互作用对静电纺纳米纤维形态的影响[J]. 东华大学学报(自然科学版), 2018, 44(1):1-9.
ZUO Xiaofei, ZHANG Jiaojiao, YU Gaili, et al. Influence of the interaction of solution properties on the mophology of electrospun nanofibers[J]. Journal of Donghua University(Natural Science), 2018, 44(1):1-9.
[21] LIN H, ZHENG Z, YUAN J, et al. Collagen peptides derived from sipunculus nudus accelerate wound hea-ling[J]. Molecules, 2021. DOI: 10.3390/molecules26051385.
doi: 10.3390/molecules26051385
[22] CHENG Y, HU Z, ZHAO Y, et al. Sponges of carboxymethyl chitosan grafted with collagen peptides for wound healing[J]. International Journal of Molecular Sciences, 2019.DOI:10.3390/ijms20163890.
doi: 10.3390/ijms20163890
[23] MAZLOOM-JALALI A, SHARIATINIA Z, TAMAI I A, et al. Fabrication of chitosan-polyethylene glycol nanocomposite films containing ZIF-8 nanoparticles for application as wound dressing materials[J]. International Journal of Biological Macromolecules, 2020, 153(15):421-432.
doi: 10.1016/j.ijbiomac.2020.03.033
[24] YANG L J, GUO J, YU Y, et al. Hydrogen bonds of sodium alginate/antarctic krill protein composite material[J]. Carbohydrate Polymers, 2016, 142:275-281.
doi: 10.1016/j.carbpol.2016.01.050 pmid: 26917400
[25] 赵新哲, 王绍霞, 高晶, 等. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(4):33-41.
ZHAO Xinzhe, WANG Shaoxia, GAO Jing, et al. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes[J]. Journal of Textile Research, 2021, 42(4):33-41.
doi: 10.1177/004051757204200107
[1] 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38.
[2] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[3] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[4] 刘亚, 赵晨, 庄旭品, 赵义侠, 程博闻. 基于Polyflow模拟的茂金属聚乙烯纺黏长丝制备及其性能[J]. 纺织学报, 2023, 44(12): 1-9.
[5] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[6] 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25.
[7] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[8] 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224.
[9] 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35.
[10] 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
[11] 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23.
[12] 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204.
[13] 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10.
[14] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[15] 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!