纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 41-49.doi: 10.13475/j.fzxb.20220302701

• 纤维材料 • 上一篇    下一篇

聚乳酸/驻极体熔喷非织造材料的制备及其性能

谷英姝1,2, 朱燕龙1,2, 汪滨1,2, 董振峰1,2, 谷潇夏1,2, 杨昌兰1,2, 崔萌1,2, 张秀芹1,2()   

  1. 1.北京服装学院 服装材料研究开发与评价北京市重点实验室, 北京 100029
    2.北京服装学院 北京市纺织纳米纤维工程技术研究中心, 北京 100029
  • 收稿日期:2022-03-07 修回日期:2022-06-07 出版日期:2023-08-15 发布日期:2023-09-21
  • 通讯作者: 张秀芹(1976—),女,教授,博士。主要研究方向为生物可降解聚乳酸纤维的研制与应用开发。E-mail:clyzxq@bift.edu.cn
  • 作者简介:谷英姝(1994—),女,硕士生。主要研究方向为生物基与环境友好高分子材料。
  • 基金资助:
    国家自然科学基金项目(52173027);国家自然科学基金项目(51929301);国家自然科学基金项目(52103069);北京学者项目(RCQJ20303)

Preparation and properties of polylactic acid/electret melt-blown nonwovens

GU Yingshu1,2, ZHU Yanlong1,2, WANG Bin1,2, DONG Zhenfeng1,2, GU Xiaoxia1,2, YANG Changlan1,2, CUI Meng1,2, ZHANG Xiuqin1,2()   

  1. 1. Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2022-03-07 Revised:2022-06-07 Published:2023-08-15 Online:2023-09-21

摘要:

为赋予聚乳酸熔喷非织造材料高效的驻极性能和过滤性能,以聚乳酸(PLA)为原料,选用有机氟驻极粉体、电气石和纳米SiO23种驻极体,分别通过熔融共混法和熔喷纺丝技术制备了PLA/驻极体复合材料和PLA/驻极体熔喷非织造材料,并对其性能进行研究。结果表明:驻极体可显著提高PLA熔喷非织造材料的电荷存储能力,添加质量分数为1%时,PLA/SiO2复合材料的驻极性能最佳,在室温条件下保存6 d后表现静电量仍保持在1.77 kV左右;在32 L/min的气体流速下,PLA/SiO2熔喷非织造材料的空气过滤效率达到78.5%,比纯PLA非织造材料的过滤效率高41%,而纯PLA熔喷非织造材料的过滤效率仅为37.5%;在此基础上,利用硅烷偶联剂改性使纳米SiO2在PLA中均匀分散,可显著提高熔喷材料过滤效率至88.4%,显示出高效低阻的优势,可推动绿色环保聚乳酸材料在空气过滤领域的应用。

关键词: 聚乳酸, 纳米SiO2, 驻极体, 熔喷非织造材料, 空气过滤

Abstract:

Objective At present, the problem of air pollution is becoming increasingly serious. Melt-blown nonwovens have the characteristics of fine fibers, high porosity, and small pore size, which can effectively filter out dust and ensure the health of the wearer. Most of the commercially available melt-blown nonwovens are made from polypropylene (PP) due to their excellent filtration performance, but their non-renewable and non-degradable nature of the materials themselves may lead to resource crises and environmental pollution issues. Therefore, the development of green and renewable melt-blown nonwovens is of great significance.

Method Different types of electrets and polylactic acid(PLA) were selected to prepare PLA/electret composites by melt blending and hot pressing, in order to obtain the best electret SiO2 for PLA. Next, the SiO2 was modified by silane coupling agent KH570 to reduce its agglomeration. As the last step, PLA/SiO2 melt-blown nonwovens were prepared by melt-blown spinning and high pressure in-situ electret technology, and charge storage capacity and air filtration performance of the samples were systematically investigated.

Result The PLA/electret composite membrane material was successfully prepared using the melt blending method. The PLA/SiO2 membrane material showed an increase in peak intensity at 1 109 cm-1, which is the symmetric stretching vibration peak of Si—O of SiO2, proving the successful composite(Fig.2). The starting thermal decomposition temperature of the PLA/polytetrafluoroethylene(PTFE) membrane material is reduced to around 240 ℃ and the starting thermal decomposition temperature of the PLA/ SiO2 membrane material is set at around 302 ℃, demonstrating that the addition of the electret SiO2 has little effect on the thermal stability of PLA(Fig.3). The electret significantly improves the charge storage capacity of the PLA membrane material, where the surface electrostatic charge is 8.154 kV for the pure PLA membrane material and 17.44 kV for the PLA/ SiO2 membrane material, an increment of up to 113.88%(Fig.3). The residual electrostatic charge on the surface of the PLA membrane material was 3.23 kV after 48 h, while the residual electrostatic charge on the surface of the PLA/ SiO2 membrane material was still as high as 6.34 kV. This demonstrates that the addition of a 1% mass fraction of SiO2 nanoparticles resulted in a better electret effect on the PLA membrane materials. In order to reduce the agglomeration of SiO2, the silane coupling agent KH570 was used to modify the SiO2. The modified SiO2-570 sample shows a C—H vibration peak at a wavelength of 2 930 cm-1 and a weak C=O stretching vibration peak at 1 720 cm-1, both of which are characteristic peaks of KH570 Both of them are characteristic peaks of KH570, which proves that KH570 was successfully grafted onto the SiO2 surface(Fig.5). The modified SiO2-570 nanoparticles are more uniformly dispersed in the PLA matrix, effectively reducing the agglomeration of SiO2(Fig.6). The air filtration efficiency of the PLA melt-blown nonwovens was only 37.5% at a gas flow rate of 32 L/min (Fig.8). The filtration performance of the PLA/SiO2-570 melt-blown nonwovens was superior, with a signifi-cant increase in filtration efficiency to 88.4% and a filtration resistance of only 6.2 Pa, making it more valuable for practical applications.

Conclusions Firstly, PLA/PTFE, PLA/tourmaline and PLA/SiO2 composite membrane materials were prepared by melt blending method. Among them, the electret SiO2 has less influence on the thermal stability of PLA, and the prepared composite membrane materials have a high surface charge and relatively slow charge decay. Secondly, in order to reduce the agglomeration of SiO2, the silane coupling agent KH570 was successfully grafted onto the SiO2 surface, and the SiO2-570 nanoparticles were more uniformly dispersed in the PLA matrix, significantly reducing the agglomeration of SiO2. Finally, the PLA/SiO2-570 melt-blown nonwovens prepared by melt-blown spinning processing and in situ electret technology has excellent filtration performance, with a significant increase in filtration efficiency to 88.4% and a filtration resistance of only 6.2 Pa. It has great potential for applications in personal protection and air filtration.

Key words: poly lactic acid, nano SiO2, electret, melt-blown nonwoven, air filtration

中图分类号: 

  • TQ316.67

图1

3种驻极体的SEM照片"

图2

PLA/驻极体膜样品的红外光谱图"

图3

PLA/驻极体膜样品的TG曲线"

图4

PLA/驻极体膜样品表面静电量"

图5

SiO2改性前后的红外光谱图"

图6

PLA、PLA/SiO2和 PLA/SiO2-570断面SEM照片"

图7

PLA熔喷非织造材料驻极前后SEM照片"

图8

熔喷非织造材料的过滤性能"

[1] 尚婷婷, 张昉, 张亚群. 室内空气污染现状及防治对策[J]. 广东化工, 2019, 46(23): 99,110.
SHANG Tingting, ZHANG Fang, ZHANG Yaqun. Air pollution and prevention of indoor environment[J]. Guangdong Chemical Industry, 2019, 46(23): 99,110.
[2] 陈海明, 董侠, 赵莹, 等. 废弃一次性医用口罩的回收利用与化学升级再造[J]. 高分子学报, 2020, 51(12): 1295-1306.
CHEN Haiming, DONG Xia, ZHAO Ying, et al. Recycling and chemical upcycling of waste disposable medical masks[J]. Acta Polymerica Sinica, 2020, 51(12): 1295-1306.
[3] 徐燕. 口罩用聚乳酸熔喷布的专利申请现状研究[J]. 化工管理, 2020(25):89-92.
XU Yan. Study on patent application status of polylactic acid melt blown cloth for mask[J]. Chemical Enterprise Management, 2020(25):89-92.
[4] 张煌忠. 熔喷非织造材料在空气过滤领域的技术发展研究[J]. 盐城工学院学报(自然科学版), 2015, 28(4): 56-60.
ZHANG Huangzhong. Research on the development of the technology of melt-blown nonwoven materials in the field of air filtratim[J]. Journal of Yancheng Institute of Technology (Natural Science Edition), 2015, 28(4): 56-60.
[5] 孟庆杰, 兰天, 李南, 等. 活性炭负载二氧化钛改性聚丙烯熔喷无纺布的制备及吸附性能[J]. 南京航空航天大学学报, 2019, 51(6): 857-863.
MENG Qingjie, LAN Tian, LI Nan, et al. Preparation and adsorption of titanium dioxide/activated carbon/polyproylene nonwovens by melt blown method[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(6): 857-863.
[6] 谷英姝, 汪滨, 董振峰, 等. 聚乳酸熔喷非织造材料用于空气过滤领域的研究进展[J]. 化工新型材料, 2021, 49(1): 1-5.
GU Yingshu, WANG Bin, DONG Zhenfeng, et al. Research progress on PLA melt-blown nonwoven applied in air filtration[J]. New Chemical Materials, 2021, 49(1): 1-5.
[7] 朱斐超, 韩建, 于斌, 等. 熔喷非织造用聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸双组分生物降解材料的可纺性能[J]. 纺织学报, 2016, 37(2):21-26.
ZHU Feichao, HAN Jian, YU Bin, et al. Study on spinnability of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(lactic acid) blends for. melt-blown nonwovens[J]. Journal of Textile Research, 2016, 37(2): 21-26.
[8] DZIERZKOWSKA E, SCISLOWSKA-CZARNECKA A, KUDZIN M, et al. Effects of process parameters on structure and properties of melt-blown poly(lactic acid) nonwovens for skin regeneration[J]. Journal of Fuctional Biomaterials, 2021, 12(1): 16-32.
[9] 刘亚, 程博闻, 周哲, 等. 聚乳酸熔喷非织造布的研制[J]. 纺织学报, 2007, 28(10): 49-53.
LIU Ya, CHENG Bowen, ZHOU Zhe, et al. Study on PLA meltblowns[J]. Journal of Textile Research, 2007, 28(10): 49-53.
[10] 刘亚. 熔喷/静电纺复合法聚乳酸非织造布的制备及过滤性能研究[D]. 天津: 天津大学, 2009: 36-63.
LIU Ya. Preparation and filtration properties of melt blown/electrospun polylactic acid nonwovens[D]. Tianjin:Tianjin University, 2009: 36-63.
[11] FENG J Y. Preparation and properties of poly(lactic acid) fiber meltblown non-woven disordered mats[J]. Materials Letters, 2017, 189: 180-183.
doi: 10.1016/j.matlet.2016.12.013
[12] 黄海超, 宋国林, 唐国翌, 等. 驻极体-增塑剂复合改性聚乳酸熔喷非织造材料的制备及性能[J]. 复合材料学报, 2019, 36(3): 563-571.
HUANG Haichao, SONG Guolin, TANG Guoyi, et al. Preparation and properties of nano-SiO2 electret/PLA composite meltblown nonwovens[J]. Acta Materiae Composite Sinica, 2019, 36(3): 563-571.
[13] 蔡诚, 唐国翌, 宋国林, 等. 纳米SiO2驻极体/聚乳酸复合熔喷非织造材料的制备及性能[J]. 复合材料学报, 2017, 34(3): 486-493.
CAI Cheng, TANG Guoyi, SONG Guolin, et al. Preparation and properties of nano-SiO2 electret/PLA composite meltblown nonwovens[J]. Acta Materiae Composite Sinica, 2017, 34(3): 486-493.
[14] 夏钟福. 聚合物驻极体气体和空气过滤材料在环境净化工程中的研究及进展[J]. 材料导报, 2011, 15(8): 57-58.
XIA Zhongfu. Development of Polymeric electret air/gas filter materials applied in environmental clean-up engineering[J]. Materials Reports, 2011, 15(8): 57-58.
[15] CHANA P, MANLIDA A, THAPANEE W. Effect of silica resources on the biodegradation behavior of poly (lactic acid) and chemical crosslinked poly (lactic acid) composites[J]. Polymer Testing, 2018, 71: 87-94.
doi: 10.1016/j.polymertesting.2018.08.026
[16] CAI Y M, LV J G, FENG J M. Spectra characterization of four kins of biodegradable plastics: poly (lactic acid), poly (butylenes adipate-co-terephthalate), poly (hydroxybutyrate-co-hydroxyvalerate) and poly (butylenes succinate) with FT-IR and Raman spectroscopy[J]. Journal of Polymers and the Environment, 2013, 21(1): 108-114.
doi: 10.1007/s10924-012-0534-2
[17] 刘荣仲, 刘俊松. 用红外光谱鉴定塑料成分[J]. 塑料科技, 2008, 36(6): 72-77.
LIU Rongzhong, LIU Junsong. Identification of plastic composition by IR spectra[J]. Plastics Science and Technology, 2008, 36(6): 72-77.
[18] 李芳芳. 电气石的性质及应用展望[J]. 现代矿业, 2007, 3: 10-13.
LI Fangfang. Property of tourmaline and application prospect[J]. Express Information of Mining Industry, 2007, 3: 10-13.
[19] 渠叶红, 柯勤飞, 靳向煜, 等. 熔喷聚乳酸非织造材料工艺与过滤性能研究[J]. 产业用纺织品, 2005, 23(5):19-22.
QU Yehong, KE Qinfei, JIN Xiangyu, et al. Study on the meltblown PLA nonwoven process and filtration property[J], Technical Textiles, 2005, 23(5): 19-22.
[20] 张云浩, 翟兰兰, 王彦, 等. 硅烷偶联剂KH-570表面改性纳米SiO2[J]. 材料科学与工程学报, 2012, 30(5): 752-756.
ZHANG Yunhao, ZHAI Lanlan, WANG Yan, et al. Surface modification of nano-SiO2 by silane coupling agent 3-(methacryloyloxy) propyltrimethoxysilane[J]. Journal of Materials Science and Engineering, 2012, 30(5): 752-756.
[21] 苏瑞彩, 李文芳, 彭继华, 等. 硅烷偶联剂KH570对纳米SiO2的表面改性及其分散稳定性[J]. 化工进展, 2009, 28(9): 1596-1599.
SU Ruicai, LI Wenfang, PENG Jihua, et al. Surface modification of nano-sized SiO2 with silane coupling agent and its dispersion[J]. Chemical Industry and Engineering Progress, 2009, 28(9): 1596-1599.
[22] 宋志勇, 李乃状, 张蕾, 等. 改性二氧化硅对SiO2/PLA复合膜性能的影响[J]. 包装工程, 2020, 41(15): 142-148.
SONG Zhiyong, LI Naizhuang, ZHANG Lei, et al. Effect of modified silica on properties of SiO2/PLA composite films[J]. Packaging Engineering, 2020, 41(15): 142-148.
[23] 王伟山, 易红玲, 郑柏存, 等. 甲基丙烯酸甲酯对纳米SiO2的表面接枝聚合改性研究[J]. 化工新型材料, 2009, 37(9): 83-85.
WANG Weishan, YI Hongling, ZHENG Bocun, et al. Surface grafting modification of nano-SiO2 by polymerization[J]. New Chemical Materials, 2009, 37(9): 83-85.
[24] 毋伟, 陈建峰, 屈一新. 硅烷偶联剂的种类与结构对二氧化硅表面聚合物接枝改性的影响[J]. 硅酸盐学报, 2004, (5): 570-575.
WU Wei, CHEN Jianfeng, QU Yixin. Influence of the kinds and structure of silane coupling agent on polymer grafting modification of the ultrafine silicon dioxide surface[J]. Journal of the Chinese Ceramic Society, 2004, (5): 570-575.
[25] JI J H, BAE G N, KANG S H, et al. Effect of particle loading on the collection performance of an electret cabin air filter for submicron aerosols[J]. Journal of Aerosol Science, 2003, 34(11): 1493-1504.
doi: 10.1016/S0021-8502(03)00103-4
[26] 侯冠一, 武文杰, 万海肖, 等. 口罩聚丙烯熔喷布的静电机理及其影响因素的研究进展[J]. 高分子通报, 2020, 8(1): 256-277.
HOU Guanyi, WU Wenjie, WAN Haixiao, et al. Research progress of static-electricity mechanism and influencing factors of polypropylene melt-blown nonwovens in mask[J]. Polymer Bulletin, 2020, 8(1): 256-277.
[1] 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22.
[2] 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29.
[3] 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38.
[4] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[5] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[6] 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34.
[7] 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35.
[8] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[9] 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98.
[10] 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33.
[11] 赵明顺, 陈枭雄, 于金超, 潘志娟. 光致变色聚乳酸纤维的纺制及其微观结构与性能[J]. 纺织学报, 2023, 44(07): 10-17.
[12] 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136.
[13] 钱红飞, KOBIR MD. Foysal, 陈龙, 李林祥, 方帅军. 聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能[J]. 纺织学报, 2023, 44(03): 104-110.
[14] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[15] 杨潇东, 于斌, 孙辉, 朱斐超, 刘鹏. 聚乙烯三氟氯乙烯熔喷非织造材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(02): 19-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!