纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 108-115.doi: 10.13475/j.fzxb.20220600301

• 纺织工程 • 上一篇    下一篇

基于多维度建模的碳/碳软硬混编预制体孔隙分析与单胞模型

梅宝龙1,2, 董九志1,3(), 任洪庆1,3, 蒋秀明1,3   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.中国纺织机械协会, 北京 100020
    3.天津工业大学 天津市现代化机电装备技术重点实验室, 天津 300387
  • 收稿日期:2022-06-01 修回日期:2022-11-29 出版日期:2023-09-15 发布日期:2023-10-30
  • 通讯作者: 董九志(1981—),男,副教授,博士。主要研究方向为复合材料预制件成型技术、新型纺织机械机电一体化。E-mail:dongjiuzhi@tiangong.edu.cn
  • 作者简介:梅宝龙(1988—),男,博士生。主要研究方向为复合材料预制件成型技术与复合材料力学。
  • 基金资助:
    天津市科技支撑重点计划项目(15ZSZDGX00840);天津市自然科学基金资助项目(18JCYBJC20200)

Unit modeling and pore analysis of C/C soft-hard blended preform based on multi-dimensional modeling

MEI Baolong1,2, DONG Jiuzhi1,3(), REN Hongqing1,3, JIANG Xiuming1,3   

  1. 1. School of Mechanical Engineering,Tiangong University, Tianjin 300387, China
    2. China Textile Machinery Association, Beijing 100020, China
    3. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tiangong University, Tianjin 300387, China
  • Received:2022-06-01 Revised:2022-11-29 Published:2023-09-15 Online:2023-10-30

摘要:

为探究碳/碳软硬混编预制体在压实过程初始和最终密实2个阶段中孔隙分布及变化,解决成型后孔隙率无法预测的问题。基于碳/碳软硬混编预制体成型工艺构建一种三维四向孔隙模型,在无压缩载荷和施加压缩载荷2种工况下,从单胞模型的xoy平面和xoz平面2个维度、4个方向观测孔隙;从介观和微观2个尺度研究载荷下纤维形态与截面形状变化对单胞孔隙的影响,建立了纤维尺寸截面变化与孔隙率映射关系,提出影响孔隙率的尺寸系数,使预制体最终孔隙率具有可设计性;通过单胞孔隙模型计算得到预制体在压实阶段最小孔隙率。利用万能拉伸试验机对不同尺寸的预制体进行压实致密实验,得到不同尺寸预制体所受压缩载荷与高度变化曲线,揭示了预制体高度与孔隙率的关系并得到压实致密阶段最小孔隙率。实验结果表明最小孔隙率与理论模型误差小于3%,验证了软硬混编单胞孔隙模型表征预制体孔隙率的正确性。

关键词: 碳/碳软硬混编预制体, 多维度, 单胞孔隙模型, 压实致密, 孔隙率

Abstract:

Objective In order to explore the pore distribution and change of the C/C soft-hard blended preform in the initial and final stages of the compaction process, the problem that the porosity can not be predicted at the completion of the preform was set and research focus.

Method A 3-D four-direction pore model was established based on the C/C soft-hard weaving preform process. The pores from the xoy plane and xoz plane of the unit model in two dimensions and four directions were studied with and without compression load. The influences of fiber shape and cross section shape of the pore of the unit under the load were studied from mesoscopic and microscopic scales. The mapping relationship between the change of fiber size and porosity was solved by using the geometric model and the size coefficient affecting the porosity was proposed.

Results The minimum porosity of the unit preform in the final compaction stage was found to be 26.1% by using the 3-D four-direction preform unit pore model and parameters (Tab. 1). A universal tensile testing machine was used to perform compaction and densification experiments on the preforms of different sizes. Resin curing was performed on the preform under different compression loads, before the pore morphologies were observed. The results show that the compaction process of the preform consists of three stages, i.e. initial linear, nonlinear and final linear. In the initial linear stage, the height of the preform was compressed rapidly by small pressure, the load increases and the height decreases slowly in the nonlinear stage, and in the final linear stage, the load was increased while the height of the preform does not change. The porosity in the compaction process was obtained using the weighing method, and the mapping relationship between the height and porosity of the preform was obtained. The compression load and height variation curve of the three groups of preform with different bottom areas and the same height was showed, and the compression load of the three groups of experiments approximately increased by multiple times (Fig. 10(a)). The porosity decreased with the decrease of the height of the preform (Fig. 10(b)). When the height was kept constant, the porosity of the preform reached the minimum value of 27.4%. The compression load and height variation curve of three groups of preform with different heights and the same base area was reveal, and the compression load of the three groups of experiments was approximately equal (Fig. 11(a)). The minimum porosity of the preform at the compaction and densification stage was 27.9%, 28.4% and 28.7%, respectively (Fig. 11(b)). The experimental results show that the maximum error between the theoretical model and the actual minimum porosity was 2.6%.

Conclusion The experimental results verify the feasibility and correctness of the 3-D four-direction C/C soft-hard blended preform unit pores, which were observed and virtually constructed in two dimensions and four directions of xoy plane and xoz plane. At mesoscopic and microscopic scales, the influences of fiber shape and cross section shape on the porosity of the preform under load were studied. The mapping relationship between fiber size change and porosity was established by geometric modeling, and the size coefficient affecting the porosity was proposed to make the final porosity of the preform designable. At the same time, the compaction and densification process law of the 3-D four-direction preform was revealed, The results show that the final linear stage determines the porosity of the preform. The modeling method can also be applied to the pore model of the preform fabric of the integrated piercing fabric and the 3-D orthogonal fabric, providing theoretical guidance for the regulation and prediction of the final porosity of the preform fabric.

Key words: C/C soft-hard weaving preform, multi-dimension, unit porous model, compaction, porosity

中图分类号: 

  • TB332

图1

三维四向碳/碳预制体模型 1—碳纤维;2—碳棒;3—孔隙。"

图2

碳/碳软硬混编复合材料 1—水平面;2—垂直平面。"

图3

预制体显微形貌 1—碳纤维;2—碳棒;3—孔隙。"

图4

无压缩载荷下xoy平面单胞孔隙模型 1—碳纤维;2—碳棒;3—孔隙。"

图5

无压缩载荷下单胞孔隙模型 1—碳纤维;2—碳棒;3—孔隙。"

图6

无压缩载荷下xoz平面孔隙模型"

图7

载荷下单胞孔隙模型 1—碳纤维;2—碳棒;3—孔隙。"

图8

载荷下xoz平面单胞孔隙模型"

表1

预制体工艺参数"

l/mm d/mm w/mm k1/% k2/% k3/%
3.2 1.5 1.571 33.8 32.2 33.8

图9

实验装置 1—实验夹具;2—预制体样件。"

图10

编号为1、2、3的预制体压实致密曲线"

图11

编号为4、5、6的预制体压实致密曲线"

表2

三维四向预制体实验参数"

预制体
编号
尺寸/
mm
压缩载荷/
N
最终
孔隙率/%
孔隙率
误差/%
1 32×30×30 151 27.4 1.3
2 64×60×30 314 27.4 1.3
3 96×90×30 582 27.4 1.3
4 32×30×30 148 27.9 1.8
5 32×30×60 166 28.4 2.3
6 32×30×120 172 28.7 2.6
[1] GUTOWSK T G, CAI Z, BAUER S, et al. Consolidation experiments for laminate composites[J]. Journal of Composite Materials, 1987, 21(7):650-669.
doi: 10.1177/002199838702100705
[2] TREVINO L, RUPEL K, YOUNG W B, et al. Analysis of resin injection molding in molds with preplaced fiber mats: I: permeability and compressibility measur-ements[J]. Polymer Composites, 1991, 12(1):20-29.
doi: 10.1002/pc.v12:1
[3] 胡培利, 单忠德, 刘云志, 等. 复合材料构件预制体压实致密工艺研究[J]. 机械工程学报, 2019, 55(9):191-197.
doi: 10.3901/JME.2019.09.191
HU Peili, SHAN Zhongde, LIU Yunzhi, et al. Compaction and densification process of composite component preforms[J]. Journal of Mechanical Engineering, 2019, 55(9):191-197.
doi: 10.3901/JME.2019.09.191
[4] CHEN Z R, YE L, KRUCKENBER T. A micromechanical compaction model for woven fabric preforms: part I: single layer[J]. Composites Ence and Technology, 2006, 66(16):3254-3262.
[5] CHEN Z R, YE L, KRUCKENBER T. A micromechanical compaction model for woven fabric preforms: Part II: multilayer[J]. Composites Ence and Technology, 2006, 66(16):3263-3272.
[6] KELLY P A. A viscoelastic model for the compaction of fibrous materials[J]. Journal of The Textile Institute, 2011, 102(8):689-699.
doi: 10.1080/00405000.2010.515103
[7] GREEN S D, LONG A C, SAID B S F E, et al. Numerical modelling of 3D woven preform deform-ations[J]. Composite Structures, 2014, 108(1):747-756.
doi: 10.1016/j.compstruct.2013.10.015
[8] GREEN S D, MATVEEV M Y, LONG A C, et al. Mechanical modelling of 3D woven composites considering realistic unit cell geometry[J]. Composite Structures, 2014, 118(12):284-293.
doi: 10.1016/j.compstruct.2014.07.005
[9] 刘云志, 单忠德, 战丽, 等. 柔性导向三维正交结构复合材料预制体建模研究[J]. 工程塑料应用, 2016, 44(6):63-66,83.
LIU Yunzhi, SHAN Zhongde, ZHAN Li, et al. Research on modeling of 3D orthogonal flexible weavon composite preform[J]. Engineering Plastics Application, 2016, 44(6):63-66,83.
[10] BROWN D, WU Z J. Stiffness properties of 3-D orthogonally woven fabric composites[J]. Advances in Composite Materials & Structures VII, 2014, 28(1):377-386.
[11] 蒋建军, 陈星, 邓国力, 等. 嵌套效应对单向织物压缩行为的影响[J]. 复合材料学报, 2017, 34(11):2463-2472.
JIANG Jianjun, CHEN Xing, DENG Guoli, et al. Effect of nesting on the compaction behavior of unidirectional fabrics[J]. Acta Materiae Compositae Sinica, 2017, 34(11):2463-2472.
[12] 杨彩云, 李嘉禄. 三维机织复合材料纤维体积含量计算方法[J]. 固体火箭技术, 2005, 28(3):224-227.
YANG Caiyun, LI Jialu. Calculation methods of 3D woven composites fiber volume fraction[J]. Journal of Solid Rocket Technology, 2005, 28(3):224-227.
[1] 梅宝龙, 董九志, 杨涛, 蒋秀明, 任洪庆. 三维四向碳/碳预制件微孔板压实致密关键技术[J]. 纺织学报, 2022, 43(05): 116-123.
[2] 张冰洁, 王莉, 傅维杰, 刘莉, 王建萍, 李倩文. 滑雪内衣差异化需求多维度分析[J]. 纺织学报, 2021, 42(08): 161-166.
[3] 杨海贞, 房宽峻, 刘秀明, 蔡玉青, 安芳芳, 韩双. 喷墨印花预处理对织物组织结构的影响[J]. 纺织学报, 2019, 40(05): 84-90.
[4] 刘赛, 郑冬明, 潘行星, 刘贵, 杜赵群. 交叉螺旋结构拉胀纱线及其织物的成形与表征[J]. 纺织学报, 2019, 40(02): 26-29.
[5] 田伟 雷新 从明芳 祝成炎. 纺粘非织造布制备工艺与性能的关系[J]. 纺织学报, 2015, 36(11): 68-71.
[6] 梁翠芳 陈霞 傅婷 卜佳仙 万贤福 汪军. 基于图像处理的网格圈织物孔隙率检测[J]. 纺织学报, 2014, 35(5): 49-0.
[7] 周明, 王鸿博, 王银利, 高卫东. 基于图像处理技术的纳米纤维膜孔隙率表征[J]. 纺织学报, 2012, 33(1): 20-23.
[8] 鲍韡韡;王曙东;张幼珠;尹桂波;吴佳林;施德兵;董智慧;符伟国. 静电纺再生丝素/明胶纳米纤维的结构与性能[J]. 纺织学报, 2008, 29(3): 1-4.
[9] 付海明;钟珂. 计算机优化选择纤维滤料结构参数[J]. 纺织学报, 2008, 29(12): 112-116.
[10] 杜兆芳;郭世俊. 黄麻/苎麻草坪培植基的透气透湿性分析[J]. 纺织学报, 2005, 26(6): 57-58.
[11] 王丽华;盛京;赵家森. 聚苯硫醚中空纤维微滤膜的研究(Ⅱ)——拉伸工艺对中空纤维结构与性能的影响[J]. 纺织学报, 2004, 25(01): 25-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!