纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 116-123.doi: 10.13475/j.fzxb.20220800301

• 染整与化学品 • 上一篇    下一篇

基于光热利用的金属有机骨架/石墨烯复合膜对印染废水的再生处理

李璟孜1, 娄蒙蒙1, 黄世燕1, 李方1,2()   

  1. 1.东华大学 环境科学与工程学院, 上海 201620
    2.东华大学 国家环境保护纺织工业污染防治工程技术中心, 上海 201620
  • 收稿日期:2022-08-01 修回日期:2023-06-20 出版日期:2023-09-15 发布日期:2023-10-30
  • 通讯作者: 李方(1979—),男,教授,博士。主要研究方向为水污染控制。E-mail:lifang@dhu.edu.cn
  • 作者简介:李璟孜(1998—),女,硕士生。主要研究方向为膜在水处理中的应用。
  • 基金资助:
    上海市科技创新行动计划项目(21DZ1209900);中央高校基本科研业务费专项资金资助项目(2232021G-11)

Recycling treatment of dyeing wastewater by metal organic framework/graphene composite membrane based on photothermal utilization

LI Jingzi1, LOU Mengmeng1, HUANG Shiyan1, LI Fang1,2()   

  1. 1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
    2. Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, China
  • Received:2022-08-01 Revised:2023-06-20 Published:2023-09-15 Online:2023-10-30

摘要:

为促进金属有机骨架(MOF)在印染废水处理中的应用,采用真空抽滤法制备了高性能金属有机骨架/石墨烯光热复合材料,通过界面蒸发方式对印染废水进行再生利用。利用扫描电子显微镜、X射线衍射仪和紫外-可见-近红外漫反射光谱仪等手段,对膜材料进行微观结构和光学性能的表征,研究了膜光热性能及废水光热蒸发性能。结果表明:沸石咪唑酯骨架材料ZIF-8改变了石墨烯微观构造并提高了光热转换效率,1个模拟太阳光下,膜表面温度升至97.6 ℃;印染废水再生处理结果显示,在1.0 kW/m2的光照下,纯水的蒸发速率可达1.34 kg/(m2·h),光热利用率为91.2%,对废水中有机污染物、色度及盐分的截留超过99.6%;复合膜性能稳定,重复使用7次后通量仍无明显降低。通过MOF简单地修饰石墨烯材料,显著提升了二维碳基材料的光热性能,具有较好的印染废水处理应用前景。

关键词: 界面蒸发, 石墨烯膜, 金属有机骨架, 印染废水, 光热转换, 光热材料

Abstract:

Objective With the goal of reducing pollution and carbon, efficient and low-cost photothermal wastewater recycling technology has attracted more attention. Solar interfacial evaporation is considered a green and sustainable water treatment technology for treating wastewater by absorbing solar energy to convert light energy into heat energy. However, the photothermal efficiencies of most photothermal carbon materials are dissatisfactory. Therefore, in order to improve the photo-thermal utilization rate, a metal organic framework(MOF)/graphene photothermal composite material with good photothermal performance was prepared by a vacuum filtration method. The prepared material was used to treat dyeing wastewater and recycled pure water by interfacial evaporation.

Method The graphene-based MOF material was prepared by in-situ growth method and deposited on a hydrophilic polyvinylidene difluoride (PVDF) based membrane surface as a photothermal layer to facilitate the evaporation of fresh water and rejection of pollutants. Because of the selectivity of the prepared G-ZIF membrane, only allowed water vapor was to pass through the membrane pores, and non-volatile organic matters were thus rejected. In addition, the microstructure and optical properties of the membrane materials were characterized, and the photothermal properties and wastewater evaporation performance were studied.

Results The results showed that the graphene surface changed from a two-dimensional layer-layered structure to a three-dimensional regular polyhedral crystal structure after in-situ growth of ZIF-8, which nucleated uniformly on the graphene surface and tightly encapsulated flake graphene (Fig. 1). According to the results of X-ray diffraction and Raman spectroscopy, ZIF-8 has been successfully loaded on the surface of graphene and has similar characteristic peaks to ZIF-8 (Fig. 2). The loading of ZIF-8 greatly increases the specific surface area of graphene up to 1 096.50 m2/g, thus providing more evaporation interfaces (Fig. 4). Furthermore, the optical performance analysis showed that the PVDF membrane had poor light absorption capacity, while the G-ZIF absorbance was about 2 times higher than that of the original graphene membrane, indicating the good optical property. Under the light radiation of 1.0 kW/m2, the G-ZIF membrane surface temperature rose to 97.6 ℃ that is far higher than that of the PVDF membrane, demonstrating its excellent photothermal conversion property (Fig. 5). The test of pure water evaporation performance showed that the pure water evaporation rate of G-ZIF membrane reached 1.34 kg/(m2·h) under one sun illumination, and the photothermal efficiency was 91.2% (Fig. 6). The recycling treatment of printing and dyeing wastewater showed that each square meter of G-ZIF membrane could recover 3.19, 3.37 and 2.99 kg of pure water from the three types of printing and dyeing wastewater, respectively, with photothermal utilization rates of 83.3%, 87.9% and 78.4% (Fig. 7). After photothermal treatment, almost all dyes were removed, the color retention reached 99.9%, and the COD removal rate of wastewater was over 99.6%. After evaporation, the concentration of salt ions in distilled water was reduced to 0.01-0.84 mg/L, which is far lower than the concentration of ions in drinking water set by the World Health Organization. Meanwhile, the salt rejection reached 99.9% (Fig. 8). In addition, the photothermal performance of the G-ZIF composite membrane was stable, and the flux did not decrease significantly after 7 times consecutive operations (Fig. 9).

Conclusion A graphene/MOF-based photothermal material (G-ZIF) was prepared, which can efficiently produce pure water from synthetic dyeing wastewater. The porous microstructure of the G-ZIF membrane not only provides more surface area for water vapor but also improves light absorption. In the process of dyeing wastewater treatment, the concentrations of organic-inorganic pollutants and salt decreased significantly after treatment. The results showed that the G-ZIF membrane has the advantages of high evaporation rate, high photothermal conversion efficiency, and good performance stability. By simply modifying graphene materials with MOF, the photothermal properties of two-dimensional carbon-based materials are significantly improved, implying potential application values for textile wastewater purification.

Key words: interfacial evaporation, graphene membrane, metal organic framework, printing and dyeing wastewater, photothermal conversion, photothermal material

中图分类号: 

  • TB34

图1

光热蒸发装置"

图2

不同膜的扫描电镜照片"

图3

不同膜的XRD和拉曼光谱图"

图4

氮气吸附-脱附等温线"

图5

不同膜对光热性能的影响"

图6

不同膜的水分蒸发速率及光热利用率"

图7

G-ZIF膜处理模拟废水效果"

图8

G-ZIF膜对有机物和无机物的去除率"

图9

G-ZIF膜7次循环处理废水3的蒸发速率"

[1] 蒋文雯, 莫慧琳, 樊婷玥, 等. Ag6Si2O7/TiO2复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(4): 107-113.
JIANG Wenwen, MO Huilin, FAN Tingyue, et al. Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue[J]. Journal of Textile Research, 2021, 42(4): 107-113.
[2] XU D, LIANG H, ZHU X, et al. Metal-polyphenol dual crosslinked graphene oxide membrane for desalination of textile wastewater[J]. Desalination, 2020. DOI: 10.1016/j.desal.2020.114503.
[3] MAO X, YUAN S, FALLAHPOUR N, et al. Electrochemically induced dual reactive barriers for transformation of TCE and mixture of contaminants in groundwater[J]. Environmental Science & Technology, 2012, 46(21): 12003-12011.
doi: 10.1021/es301711a
[4] AAZAM E S, MOHAMED R M. Environmental remediation of direct blue dye solutions by photocatalytic oxidation with cuprous oxide[J]. Journal of Alloys and Compounds, 2013, 577: 550-555.
doi: 10.1016/j.jallcom.2013.06.167
[5] CHO D W, JEON B H, CHON C M, et al. Magnetic chitosan composite for adsorption of cationic and anionic dyes in aqueous solution[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 60-66.
doi: 10.1016/j.jiec.2015.01.023
[6] WANG Z B, NI D, SHANG Y L, et al. Recycling of dye from wastewater using a ceramic membrane modified with bismuth/stibium co-doped tin dioxide[J]. Journal of Cleaner Production, 2019, 213: 192-198.
doi: 10.1016/j.jclepro.2018.12.159
[7] LONG Q, ZHANG Z, QI G, et al. Fabrication of chitosan nanofiltration membranes by the film casting strategy for effective removal of dyes/salts in textile wastewater[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(6): 2512-2522.
[8] 葛灿, 张传雄, 方剑. 界面光热转换水蒸发系统用纤维材料的研究进展[J]. 纺织学报, 2021, 42(12): 166-173.
GE Can, ZHANG Chuanxiong, FANG Jian. Research progress in fibrous materials for interfacial solar steam generation system[J]. Journal of Textile Research, 2021, 42(12): 166-173.
[9] 李元臻, 周佩蕾, 王菲, 等. 太阳能界面蒸发光热材料的研究进展[J]. 现代化工, 2021, 41(8): 29-32.
LI Yuanzhen, ZHOU Peilei, WANG Fei, et al. Research progress on photothermal materials for solar energy interface evaporation[J]. Modern Chemical Industry, 2021, 41(8): 29-32.
[10] 韩传龙, 李益飞, 张卫康, 等. 多功能木材表面太阳能海水淡化装置性能的研究[J]. 表面技术, 2021, 50(8): 74-83.
HAN Chuanlong, LI Yifei, ZHANG Weikang, et al. Performance of solar seawater desalination device of multi-functional wood surface[J]. Surface Technology, 2021, 50(8): 74-83.
[11] 郭星星, 高航, 殷立峰, 等. 光热转换材料及其在脱盐领域的应用[J]. 化学进展, 2019, 31(4): 580-596.
doi: 10.7536/PC180908
GUO Xingxing, GAO Hang, YIN Lifeng, et al. Photo-thermal conversion materials and their application in desalination[J]. Progress in Chemistry, 2019, 31(4): 580-596.
doi: 10.7536/PC180908
[12] WANG Y, ZHANG L, WANG P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evapora-tion[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1223-1230.
[13] WANG X Y, XUE J, MA C, et al. Anti-biofouling double-layered unidirectional scaffold for long-term solar-driven water evaporation[J]. Journal of Materials Chemistry A, 2019, 7(28): 16696-16703.
doi: 10.1039/C9TA02210D
[14] LI R, ZHANG L, SHI L, et al. MXene Ti3C2: an effective 2D light-to-heat conversion material[J]. ACS Nano, 2017, 11(4): 3752-3759.
doi: 10.1021/acsnano.6b08415
[15] FAN Y, BAI W, MU P, et al. Conductively monolithic polypyrrole 3-D porous architecture with micron-sized channels as superior salt-resistant solar steam genera-tors[J]. Solar Energy Materials and Solar Cells, 2020. DOI: 10.1016/j.solmat.2019.110347.
[16] KIRIARACHCHI H D, AWAD F S, HASSAN A A, et al. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment[J]. Nanoscale, 2018, 10(39): 18531-18539.
doi: 10.1039/c8nr05916k pmid: 30221298
[17] ZHU M, LI Y, CHEN F, et al. Plasmonic wood for high-efficiency solar steam generation[J]. Advanced Energy Materials, 2018. DOI: 10.1002/aenm.201701028.
[18] HAN S, YANG J, LI X, et al. Flame synthesis of superhydrophilic carbon nanotubes/Ni foam decorated with Fe2O3 nanoparticles for water purification via solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13229-13238.
[19] LIU X, WANG X, HUANG J, et al. Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid[J]. Applied Energy, 2018, 220: 302-312.
doi: 10.1016/j.apenergy.2018.03.097
[20] 谢梦玉, 胡啸林, 李星, 等. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(4): 117-123.
XIE Mengyu, HU Xiaolin, LI Xing, et al. Fabrication and interfacial evaporation properties of reduced graphene oxide/viscose multi-layer composite[J]. Journal of Textile Research, 2022, 43(4): 117-123.
[21] 李庆, 陈灵辉, 李丹, 等. 金属-有机骨架光催化降解染料的研究进展[J]. 纺织学报, 2021, 42(12): 188-195.
LI Qing, CHEN Linghui, LI Dan, et al. Research progress in photocatalytic degradation of dyes using metal-organic frameworks[J]. Journal of Textile Research, 2021, 42(12): 188-195.
[22] ZHENG Y Y, LI C X, DING X T, et al. Detection of dopamine at graphene-ZIF-8 nanocomposite modified electrode[J]. Chinese Chemical Letters, 2017, 28(7): 1473-1478.
doi: 10.1016/j.cclet.2017.03.014
[23] XING X, ZHANG X, ZHANG K, et al. Preparation of large-sized graphene from needle coke and the adsorption for malachite green with its graphene oxide[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2019, 27(2): 97-105.
doi: 10.1080/1536383X.2018.1512099
[24] DU P D, HIEU N T, THIEN T V. Ultrasound-assisted rapid ZIF-8 synthesis, porous ZnO preparation by heating ZIF-8, and their photocatalytic activity[J]. Journal of Nanomaterials, 2021. DOI: 10.1155/2021/9988998.
[25] HAN X, BESTEIRO L V, KOH C S L, et al. Intensifying heat using MOF-isolated graphene for solar-driven seawater desalination at 98% solar-to-thermal efficiency[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202008904.
[26] IRSHAD M S, ARSHAD N, WANG X. Nanoenabled photothermal materials for clean water production[J]. Global Challenges, 2021. DOI: 10.1002/gch2.202000055.
[1] 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133.
[2] 刘其霞, 张天昊, 季涛, 葛建龙, 单浩如. 锆基金属有机骨架材料/活性碳纤维复合材料的制备及其降解性能[J]. 纺织学报, 2023, 44(09): 134-143.
[3] 王宸杨, 贾洁, 李发学. β-环糊精基金属有机框架材料的制备及其对重金属离子的吸附[J]. 纺织学报, 2023, 44(08): 158-166.
[4] 李方, 潘航, 章耀鹏, 马慧婕, 沈忱思. 印染废水中聚乙烯醇浆料的高效去除及六价铬的协同还原[J]. 纺织学报, 2023, 44(03): 147-157.
[5] 冯帅博, 强荣, 邵玉龙, 杨啸, 马茜, 陈博文, 陈熠, 高明洋, 陈彩虹. 丝瓜络衍生碳纤维基复合材料的电磁波吸收性能[J]. 纺织学报, 2023, 44(02): 69-75.
[6] 胡倩, 杨涛语, 朱斐超, 吕汪洋, 吴明华, 余德游. 混合价态铁基金属有机框架催化过氧乙酸高效降解对硝基苯酚[J]. 纺织学报, 2022, 43(11): 133-140.
[7] 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111.
[8] 李沐芳, 陈佳鑫, 曾凡佳, 王栋. 间隔织物基光热-热电复合材料的制备及其性能[J]. 纺织学报, 2022, 43(10): 65-70.
[9] 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105.
[10] 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155.
[11] 王双双, 季志浩, 盛国栋, 金恩琪. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(09): 156-166.
[12] 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131.
[13] 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120.
[14] 高陆玺, 吕雪川, 张弛, 宋翰林, 高肖汉. 用于印染废水处理的改性絮凝剂合成及其脱色性能[J]. 纺织学报, 2022, 43(07): 121-128.
[15] 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!