纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 124-133.doi: 10.13475/j.fzxb.20220811701

• 染整与化学品 • 上一篇    下一篇

三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B

李红颖1,2, 徐毅1,2, 杨帆1,2, 任瑞鹏1, 周全1,2, 吴丽杰1,2, 吕永康1()   

  1. 1.太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室, 山西 太原 030024
    2.太原理工大学 化学工程与技术学院, 山西 太原 030024
  • 收稿日期:2022-08-25 修回日期:2023-06-21 出版日期:2023-09-15 发布日期:2023-10-30
  • 通讯作者: 吕永康(1961—),男,教授,博士。主要研究方向为生物法废水处理。E-mail: lykang@tyut.edu.cn
  • 作者简介:李红颖(1997—),女,硕士生。主要研究方向为光催化处理染料废水。
  • 基金资助:
    国家自然科学基金项目(21776196);国家自然科学基金项目(51778397);山西省应用基础研究计划项目(20210302124431)

Preparation of three-dimensional ping-pong chrysanthemum-like CdS/BiOBr composite and its application on photocatalytic degradation of Rhodamine B

LI Hongying1,2, XU Yi1,2, YANG Fan1,2, REN Ruipeng1, ZHOU Quan1,2, WU Lijie1,2, LÜ Yongkang1()   

  1. 1. State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
    2. College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
  • Received:2022-08-25 Revised:2023-06-21 Published:2023-09-15 Online:2023-10-30

摘要:

为提升BiOBr的光催化性能,通过两步法合成了三维乒乓菊状CdS/BiOBr催化剂。首先利用溶剂热法制备了BiOBr纳米片,接着采用水热法直接在层状BiOBr表面生长CdS粒子制备了CdS/BiOBr催化剂,并通过调整CdS与BiOBr的量比来调控催化剂的形貌。对制备的CdS/BiOBr催化剂的结构、形貌、光学性能等进行了表征分析,考察了其在可见光下对罗丹明B(RhB)的降解效果和稳定性,通过活性物种捕获实验和电子自旋共振测试分析确定了降解过程中的主要活性物质。结果表明:当CdS与BiOBr的量比为1∶3时,二者发生规则组合,形成独特的三维乒乓菊状层级结构;该催化剂有优异的光催化性能和稳定性,在可见光照射下120 min降解了99.5%的RhB,一级动力学常数为0.044 min-1,是纯BiOBr的3.67倍,经过7次光催化循环后仍保留了90.1%的催化活性;·O2-和h+在RhB降解过程中发挥了主要作用,结合CdS和BiOBr的带隙结构提出了一种可能的光催化降解途径。

关键词: 光催化, 印染废水处理, 罗丹明B, 水热法, 降解机制, BiOBr, CdS

Abstract:

Objective The energy crisis and environmental pollution are the two major tests facing mankind. Nitrogen-containing dyes with chromophores have stable chemical properties, which can darken the color of water bodies and affect the light transmission and are hazardous in causing genetic mutations. BiOBr has a good visible light response, but its forbidden band width is slightly larger, the visible light utilization is low, and the photogenerated carriers are prone to compounding. The combination of CdS and BiOBr is believed to have the capacity for the effective separation of electrons and holes to increase the visible light utilization to improve the photocatalytic performance.

Method BiOBr nanosheets were prepared by the solvothermal method, followed by the preparation of the CdS/BiOBr composites by growing CdS particles directly on the layered BiOBr surface by the hydrothermal method, where the morphology of the composite catalysts was adjusted by adjusting the molar ratio of the two. The prepared photocatalysts were characterized by transmission electron microscope(TEM), X-ray diffraction(XRD), UV-Vis DRS, etc., and the degradation effect and stability of the catalysts on Rhodamine B (RhB) were investigated by visible light catalysis experiments. The main active substances in the degradation process were identified by active species capture experiments.

Results When the molar ratio of CdS to BiOBr was 1∶3, the catalyst CdS/BiOBr (1∶3) morphology showed a three-dimensional ping-pong chrysanthemum-like hierarchical structure, and the CdS nanoparticles were uniformly distributed on the surface of BiOBr petal-like flakes (Fig. 2(e) and (f)). Peaks associated with Bi, Br, O, Cd and S were observed in the EDS spectrum, confirming the presence of these six elements in the composite (Fig. 3(a)), the successful formation of heterojunction between CdS and BiOBr was confirmed by the analysis of TEM (Fig. 3(b) and (c)), and the XRD spectrum indicated that the CdS/BiOBr composite was successfully prepared with high purity (Fig. 4). The catalyst CdS/BiOBr(1∶3) showed a significant red shift compared with both pure BiOBr and pure CdS, and in addition, the absorption intensity of the catalyst was significantly enhanced at 550-800 nm (Fig. 5(a)). The forbidden band widths of BiOBr and CdS were 2.70 eV and 2.28 eV (Fig. 5(b) and (c)), respectively, and the CB and VB positions of 0.33 eV and 3.03 eV for BiOBr and -0.59 eV and 1.69 eV for CdS were calculated according to equations. The fluorescence spectrum intensity of the catalyst CdS/BiOBr (1∶3) was significantly weaker compared to that of the pure BiOBr (Fig. 6), and the specific surface area of the catalyst CdS/BiOBr (1∶3) was increased compared with that of the pure component BiOBr (Fig. 7). The results of the visible photocatalytic experiments demonstrated that the light degraded 99.5% of RhB for 120 min with a primary kinetic constant of 0.044, which was 3.67 times the rate constant of pure BiOBr (Fig. 8). After 7 cycles of photocatalytic degradation of RhB, the photocatalytic activity of the three-dimensional ping-pong chrysanthemum-like catalyst CdS/BiOBr(1∶3) still reached 90.1%, and no significant changes were found in the XRD diffraction peaks of the catalyst before and after the reaction (Fig. 9-11); and by adding EDTA and BQ to the photocatalytic system, the degradation activity of RhB was obviously inhibited and the degradation rate constant was significantly reduced (Fig. 12). The EPR results showed that a large number of h+ and ·O2- radicals were indeed generated in the photocatalytic degradation reaction, which confirmed the accuracy of the radical capture experiment (Fig. 13).

Conclusion In summary, a regularly combined three-dimensional ping-pong chrysanthemum-like CdS/BiOBr photocatalyst was synthesized for the first time, which exhibited excellent photocatalytic activity and cycling stability in the photocatalytic degradation of Rhodamine B. This was attributed to the fact that the prepared CdS/BiOBr catalyst showed higher visible light absorption efficiency, lower electron-hole pair complexation chance, and a larger specific surface area of the three-dimensional ping-pong chrysanthemum-like layered structure, which provided sufficient transport paths for reactant molecules and facilitates the transfer of interfacial photogenerated carriers, thus improving the catalytic efficiency of the photocatalyst.

Key words: photocatalysis, printing and dyeing waste water treatment, rhodamine B, hydrothermal method, degradation mechanism, BiOBr, CdS

中图分类号: 

  • O643

图1

CdS/BiOBr催化剂的制备示意图"

图2

CdS及不同量比CdS/BiOBr催化剂和BiOBr的SEM照片"

图3

CdS/BiOBr(1∶3)催化剂的EDS图像和TEM照片"

图4

CdS,CdS/BiOBr(1∶3)催化剂和BiOBr的XRD图谱"

图5

紫外-可见漫反射光谱及禁带宽度图"

图6

BiOBr和CdS/BiOBr(1∶3)催化剂的PL图谱"

图7

CdS,CdS/BiOBr(1∶3)催化剂和BiOBr的氮气吸-脱附曲线"

图8

不同样品的RhB降解图、动力学曲线及动力学常数图"

图9

CdS/BiOBr(1∶3)催化剂的重复利用性能"

图10

CdS/BiOBr(1∶3)催化剂循环使用7次前后的XRD图谱"

图11

CdS/BiOBr(1∶3)催化剂循环使用7次前后的SEM照片"

图12

捕获剂对CdS/BiOBr(1∶3)催化剂降解RhB的影响"

图13

可见光下CdS/BiOBr(1∶3)催化剂EPR谱图"

图14

可见光下CdS/BiOBr(1∶3)催化剂对RhB降解机制示意图"

[1] LI J H, YANG F, ZHOU Q, et al. A regularly combined magnetic 3D hierarchical Fe3O4/BiOBr heterostructure: fabrication, visible-light photocatalytic activity and degradation mechanism[J]. Journal of Colloid and Interface Science, 2019, 546: 139-151.
doi: 10.1016/j.jcis.2019.03.028
[2] 杨丽, 王涛, 石现兵, 等. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(9): 149-155.
YANG Li, WANG Tao, SHI Xianbing, et al. Preparation of modified polyacrylonitrile fiber supported MoSx/TiO2 composite photocatalyst and its performance for dye degradation[J]. Journal of Textile Research, 2022, 43(9): 149-155.
[3] KHATAEE A R, KASIRI M B. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes[J]. Journal of Molecular Catalysis A: Chemical, 2010, 328(1/2): 8-26.
doi: 10.1016/j.molcata.2010.05.023
[4] MU Y, RABAEY K, ROZENDAL R A, et al. Decolorization of azo dyes in bioelectrochemical syst-ems[J]. Environmental Science & Technology, 2009, 43(13): 5137.
doi: 10.1021/es900057f
[5] 王静, 娄娅娅, 王春梅. 铁基金属-有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(8): 126-131.
WANG Jing, LOU Yaya, WANG Chunmei. Preparation and decolorization of iron-based metal/organic framework activated carbon fiber composites[J]. Journal of Textile Research, 2022, 43(8): 126-131.
[6] 蒋文雯, 莫慧琳, 樊婷玥, 等. Ag6Si2O7/TiO2 复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(4): 107-113.
JIANG Wenwen, MO Huilin, FAN Tingyue, et al. Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue[J]. Journal of Textile Research, 2021, 42(4): 107-113.
[7] DI J, XIA J, LI H, et al. Bismuth oxyhalide layered materials for energy and environmental applications[J]. Nano Energy, 2017, 41: 172-192.
doi: 10.1016/j.nanoen.2017.09.008
[8] DING C, MA Z, HAN C, et al. Large-scale preparation of BiOX (X=Cl, Br) ultrathin nanosheets for efficient photocatalytic CO2 conversion[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 395-400.
doi: 10.1016/j.jtice.2017.06.044
[9] WANG H T, SHI M S, YANG H F, et al. Template-free synthesis of nanosliced BiOBr hollow microspheres with high surface area and efficient photocatalytic activity[J]. Materials Letters, 2018, 222(1): 164-167.
doi: 10.1016/j.matlet.2018.03.179
[10] GAO M, ZHANG D, PU X, et al. BiOBr photocatalysts with tunable exposing proportion of {001} facets: combustion synthesis, characterization, and high visible-light photocatalytic properties[J]. Materials Letters, 2015, 140: 31-34.
doi: 10.1016/j.matlet.2014.10.032
[11] CHAO X, XIA J, WANG T, et al. A facile and efficient solvothermal fabrication of three-dimensionally hierarchical BiOBr microspheres with exceptional photocatalytic activity[J]. Materials Letters, 2014, 133: 274-277.
doi: 10.1016/j.matlet.2014.07.016
[12] 李建会. 可见光响应型磁性Fe3O4/BiOX(X=Br,I)光催化剂的制备及降解罗丹明B性能研究[D]. 太原: 太原理工大学, 2019: 10-14.
LI Jianhui. Preparation of visible-light-responsive magnetic Fe3O4/BiOX(X=Br,I) photocatalysts and their performance for RhB degradation[D]. Taiyuan: Taiyuan University of Technology, 2019: 10-14.
[13] FU J, TIAN Y, CHANG B, et al. BiOBr-carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism[J]. Journal of Materials Chemistry, 2012, 22(39): 21159-21166.
doi: 10.1039/c2jm34778d
[14] KANAGARAJ T, THIRIPURANTHAGAN S. Photocatalytic activities of novel SrTiO3-BiOBr heterojunction catalysts towards the degradation of reactive dyes[J]. Applied Catalysis B: Environmental, 2017, 207: 218-232.
doi: 10.1016/j.apcatb.2017.01.084
[15] CAO Q W, CUI X, ZHENG Y F, et al. A novel CdWO4/BiOBr p-n heterojunction as visible light photocatalyst[J]. Journal of Alloys and Compounds, 2016, 670: 12-17.
doi: 10.1016/j.jallcom.2016.02.061
[16] SENASU T, NANAN S. Photocatalytic performance of CdS nanomaterials for photodegradation of organic azo dyes under artificial visible light and natural solar light irradiation[J]. Journal of Materials Science- Materials in Electronics, 2017, 28(23): 17421-17441.
doi: 10.1007/s10854-017-7676-x
[17] SENASU T, HEMAVIBOOL K, NANAN S. Hydrothermally grown CdS nanoparticles for photodegradation of anionic azo dyes under UV-visible light irradiation[J]. RSC Advances, 2018, 8 (40): 22592-22605.
doi: 10.1039/C8RA02061B
[18] SENASU T, CHANKHANITTHA T, HEMAVIBOOL K, et al. Visible-light-responsive photocatalyst based on ZnO/CdS nanocomposite for photodegradation of reactive red azo dye and ofloxacin antibiotic[J]. Materials Science in Semiconductor Processing, 2021, 123: 105558-105572.
doi: 10.1016/j.mssp.2020.105558
[19] JING D W, GUO L J, et al. A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure[J]. Journal of Physical Chemistry B, 2006, 110: 11139-11145.
doi: 10.1021/jp060905k
[20] MEISSNER D, MEMMING R, KASTENING B. Photoelectrochemistry of cadmium sulfide: I: reanalysis of photocorrosion and flat-band potential[J]. Journal of Physical Chemistry, 1988, 92: 3476-3483.
doi: 10.1021/j100323a032
[21] 白雪峰, 樊慧娟, 王鹏. 硫化镉的改性方法及其在光催化反应中的应用[J]. 太阳能学报, 2008, 29(9):7.
BAI Xuefeng, FAN Huijuan, WANG Peng. Modification method of cadmium sulfide and its application in photocatalytic reaction[J]. Journal of Solar Energy, 2008, 29(9): 7.
[22] LIU Z, WU B, ZHU Y, et al. Cadmium sulphide quantum dots sensitized hierarchical bismuth oxybromide microsphere with highly efficient photocatalytic acti-vity[J]. Journal of Colloid and Interface Science, 2013, 392(1): 337-342.
doi: 10.1016/j.jcis.2012.09.062
[23] 牟小冬, 周国明. BiOBr/CdS复合微球的制备及其光催化性能研究[J]. 安全、健康和环境, 2018, 18(4): 35-40.
MOU Xiaodong, ZHOU Guoming. Preparation of BiOBr/CdS composite microspheres and their photocatalytic performance[J]. Safety, Health & Environment, 2018, 18(4): 35-40.
[24] CUI W, AN W, LI L, et al. Synthesis of CdS/BiOBr composite and its enhanced photocatalytic degradation for Rhodamine B[J]. Applied Surface Science, 2014, 319(15): 298-305.
doi: 10.1016/j.apsusc.2014.05.179
[25] YOU J, WANG L, BAO W, et al. Synthesis and visible-light photocatalytic properties of BiOBr/CdS nanomaterials[J]. Journal of Materials Science, 2021, 56: 6732-6744.
doi: 10.1007/s10853-020-05721-0
[26] CAO J, XU B Y, LIN H L, et al. Novel heterostructured Bi2S3/BiOI photocatalyst: facile preparation, characterization and visible light photocatalytic performance[J]. Dalton Trans, 2012, 41: 11482-11490.
doi: 10.1039/c2dt30883e pmid: 22892685
[27] ZHANG X, ZHANG L Z, XIE T F, et al. Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2heterostructures[J]. Journal of Physical Chemistry C, 2009, 113: 7371-7378.
doi: 10.1021/jp900812d
[28] QU S Y, XIONG Y H, ZHANG J. Graphene oxide and carbon nanodots co-modified BiOBr nanocomposites with enhanced photocatalytic 4-chlorophenol degradation and mechanism insight[J]. Journal of Colloid and Interface Science, 2018, 527: 78-86.
doi: S0021-9797(18)30554-X pmid: 29783141
[29] KAKARND Ee S, JUABRUM S, NANAN S. Low temperature synthesis, characterization and photoluminescence study of plate-like ZnS[J]. Materials Letters, 2016, 164: 198-201.
doi: 10.1016/j.matlet.2015.10.154
[30] TS A, SN B, SJ B, et al. CdS/BiOBr heterojunction photocatalyst with high performance for solar-light-driven degradation of ciprofloxacin and norfloxacin anti-biotics[J]. Applied Surface Science, 2021. DOI: 10.1016/j.apsusc.2021.150850.
[31] CUI H J, ZHOU Y W. Synthesis of CdS/BiOBr nanosheets composites with efficient visible-light photocatalytic activity[J]. Journal of Physics & Chemistry of Solids, 2018, 112: 80-87.
[32] JIN Y H, XING Z, LI Y H, et al. Synthetic BiOBr/Bi2S3/CdS crystalline material and its degradation of dye under visible light[J]. Crystals, 2021, 11(8): 899.
doi: 10.3390/cryst11080899
[33] CHENG H F, HUANG B B, DAI Y, et al. One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances[J]. Langmuir, 2010, 26: 6618-6624.
doi: 10.1021/la903943s pmid: 20104877
[34] FU J, TIAN Y L, CHANG B B, et al. BiOBr-carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism[J]. Journal of Materials Chemistry, 2012, 22: 21159-21166.
doi: 10.1039/c2jm34778d
[1] 王国琴, 付小航, 朱羽科, 吴礼光, 王挺, 蒋孝佳, 陈华丽. 可见光响应的介孔TiO2光降解罗丹明B机制及其降解途径[J]. 纺织学报, 2023, 44(05): 155-163.
[2] 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176.
[3] 陈明星, 张威, 王新亚, 肖长发. 纳米纤维基催化材料的制备及其在环境领域中的应用研究进展[J]. 纺织学报, 2023, 44(01): 209-218.
[4] 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111.
[5] 冯艳, 李亮, 刘淑萍, 李淑静, 刘让同. 氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效[J]. 纺织学报, 2022, 43(10): 112-118.
[6] 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105.
[7] 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155.
[8] 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131.
[9] 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120.
[10] 钱佳琪, 瞿建刚, 胡啸林, 毛庆辉. 还原氧化石墨烯/粘胶基钒酸铋光催化材料的制备及其性能[J]. 纺织学报, 2022, 43(06): 100-106.
[11] 费建武, 吕明泽, 刘利伟, 王春红, 韩振邦. 基于双层微纳米纤维膜的气液固三相体系构建及其光催化性能[J]. 纺织学报, 2022, 43(06): 37-43.
[12] 侯倩倩, 李文熙, 赵美华. 光催化条件下棉织物的蓝晒工艺印相[J]. 纺织学报, 2022, 43(04): 110-116.
[13] 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63.
[14] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60.
[15] 杨腾祥, 申国栋, 钱利江, 胡华军, 毛雪, 孙润军. 外电场极化银-钛酸钡/涤纶织物制备及其光催化性能[J]. 纺织学报, 2022, 43(02): 189-195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!