纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 134-143.doi: 10.13475/j.fzxb.20220706001

• 染整与化学品 • 上一篇    下一篇

锆基金属有机骨架材料/活性碳纤维复合材料的制备及其降解性能

刘其霞1,2, 张天昊1, 季涛1,2, 葛建龙1,2, 单浩如1,2()   

  1. 1.南通大学 纺织服装学院, 江苏 南通 226019
    2.南通大学 安全防护用特种纤维复合材料研发国家地方联合工程研究中心, 江苏 南通 226019
  • 收稿日期:2022-07-18 修回日期:2023-06-20 出版日期:2023-09-15 发布日期:2023-10-30
  • 通讯作者: 单浩如(1990—),男,教授,博士。主要研究方向为生化防护复合面料的设计与开发、柔性陶瓷纤维复合材料的制备。E-mail:hrshan@ntu.edu.cn
  • 作者简介:刘其霞(1983—),女,教授,博士,主要研究方向为新型碳材料和生化防护纺织品的开发与应用。
  • 基金资助:
    国家自然科学基金青年项目(52003126);国家自然科学基金青年项目(52003125);江苏省研究生科研与实践创新计划项目(KYCX22_3351);南通市面上项目(MS22022029);江苏省科技厅基础研究计划(自然科学基金);江苏省科技厅基础研究计划(BK20200968)

Preparation of zirconium-based organic framework material/activated carbon fiber composites and their degradation properties

LIU Qixia1,2, ZHANG Tianhao1, JI Tao1,2, GE Jianlong1,2, SHAN Haoru1,2()   

  1. 1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, Jiangsu 226019, China
  • Received:2022-07-18 Revised:2023-06-20 Published:2023-09-15 Online:2023-10-30

摘要:

为改善活性碳材料在芥子气防护过程中存在的吸附易饱和、处置不当易造成二次污染等问题,制备了一种以活性碳纤维(ACF)为基材的新型降解材料。首先利用抽滤法将纳米锆溶胶沉积到ACF表面,随后采用层层自组装法,以ZrCl4为金属簇、对苯二甲酸为有机配体,在纤维表面原位生长锆基金属有机骨架材料(Zr-MOF),最终制备出一种对芥子气模拟剂2-氯乙基乙基硫醚(CEES)有较高降解性能的Zr-MOF/ACF复合材料,综合采用扫描电子显微镜、X射线衍射、比表面积及孔结构分析等手段进行表征,并测试了其对CEES的降解性能和力学性能。结果表明:锆溶胶的引入有效提高了Zr-MOF在ACF表面的负载量,从而提升了所得材料对CEES的降解性能,并且力学性能也获得显著提高;综合考虑样品的降解性能、拉伸强度与制备效率,将经锆溶胶处理后进行15次循环处理的样品定为最佳工艺样品,经过24 h反应后,对CEES的降解率为83.08%,断裂强度为0.40 MPa,相比于酸化处理的活性碳纤维毡,复合材料的拉伸强度提升了80.99%。

关键词: 锆基金属有机骨架材料, 层层自组装法, 2-氯乙基乙基硫醚, 活性碳纤维, 化学战剂

Abstract:

Objective Mustard gas, as a typical and widely-used chemical warfare agent, poses serious damage to human beings and ecosystem ascribing to their high toxicity and fast-diffusion. How to effectively protect against these hazards is the focus and challenge of the current research. Carbon-based materials, especially activated carbon fibers, have been applied for producing breathable chemical protective clothes, benefitting from their high adsorption capacity, fast adsorption rate, and extensive sources. However, the removal of toxic chemical agents by activated carbon fibers is mainly based on the physical-adsorption process, which is easy to reach adsorption saturation and cause secondary pollutions. Endowing the existing activated carbon fibers with high-efficient catalytic performance against chemical agents seems an effective route to tackle this problem.

Method The commercial activated carbon fibers were first cleaned and then deposited with zirconia sol through suction filtration at ambient temperature. Subsequently, the preprocessed activated carbon fibers (ACF) were sequentially immersed into ZrCl4 and terephthalic acid solutions at 130 ℃for 15 min to enable the layer-by-layer growth of zirconia-based metal-organic frameworks(Zr-MOF)on the fiber surface. Different consecutive cycles(3, 6, 9, 12, 15, 18 and 21) were performed to prepare various Zr-MOF/ACF composites using the similar procedure. The surface morphologies and micro-structures of the resultant fibrous composites were characterized using scanning electron microscopy(SEM), X-ray diffraction(XRD), and chemisorption-physisorption analysis. Moreover, the degradation and mechanical properties of the composites were tested.

Result It was found that a layer of microscopic zirconium nanoparticles was uniformly loaded on the surface of activated carbon fibers after pre-treated using zirconia sol. After the subsequent layer-by-layer assembly process, the synthesized Zr-MOF particles were loaded onto the fiber surface, and amount of loading was proportional with cyclic number (Fig. 3). By comparing with XRD standard spectrum, it was seen that the characteristic peaks appeared at 2θ= 7.03°, 25.78° were consistent with that of UiO-66, revealing the successful synthesis of Zr-MOF on the fibrous composites(Fig. 4). As presented in the XPS spectrum(Fig. 5), the contents of lattice oxygen, zirconium and C=O increased in line with the cyclic numbers, demonstrating the occurrence of coordination reaction during the layer-by-layer assembly process. The increase of Zr-MOF particles loaded on the fiber surface enabled an obvious decrease of surface area and total pore volume of the resultant fibrous composites(Fig. 6 and Tab. 1). 2-Chloroethyl ehtyl sulfide(CEES)was introduced as the simulator of mustard gas to detect the protective performance against chemical agents of the resultant activated fibrous composites. The in-situ growth of Zr-MOF on the surface of ACF significantly improved the removal performance of CEES, and the degradation of CEES was also significantly improved with the increase of the cyclic numbers(Fig. 7). After 18 cycles, the degradation rate of CEES reached 84.23% after 24 h. After 3 cycles, the removal rate of CEES still reached 60% after 12 h, revealing the favorable recyclability of the obtained Zr-MOF/ACF composites(Fig. 7). In comparison with original ACF, the mechanical strength of the resultant fibrous composites was obviously increased(e.g., 80.99 % for Zr-MOF/ACF15). However, the mechanical performance displayed a declined with the increase of cyclic numbers (Tab. 2).

Conclusion The commercial activated carbon fibers were robustly endowed with high-efficient catalytic performance against chemical agents by a layer-by-layer self-assembly method, and the loading contents could be regulated by increasing the cyclic numbers. The resultant Zr-MOF/ACF composites exhibited outstanding degradation performance against CEES, and the degradation rate could reach 86.02 % for 18 cycles. The removal of CEES by Zr-MOF/ACF composites was proved to be mainly through degradation process. After three times consecutive circulation, the degradation rate of CEES by Zr-MOF/ACF composites could still maintain 63.47 %, demonstrating the favorable recyclability of the resultant activated carbon fiber composites. After the comprehensive consideration of the degradation performance, tensile strength, and sample preparation efficiency, Zr-MOF/ACF-15 with a degradation rate of 83.08 % within 24 h and a tensile strength of 0.4 MPa was preferred. The integration of outstanding degradation performance, enhanced tensile strength, and easy preparation enabled the resultant Zr-MOF/ACF composites with broad application prospect.

Key words: zirconium-based organic framework, layer-by-layer assembly, 2-chloroethyl ethyl sulfide, degradation, activated carbon fiber, chemical warfare agent

中图分类号: 

  • TJ92

图1

Zr-MOF/ACF样品制备流程示意图"

图2

CEES溶液的标准曲线图"

图3

不同样品的扫描电镜照片"

图4

Zr-MOF/ACF18的XRD图谱"

图5

ACF、Zr-Sol/ACF、Zr-MOF/ACF18的XPS谱图"

图6

不同样品的比表面积及孔结构"

表1

不同样品的比表面积及孔结构参数"

试样 比表面积/
(m2·g-1)
平均孔径/
nm
总孔容/
(cm3·g-1)
中孔
率/%
大孔
率/%
ACF 852.17 1.85 0.40 0.30 0.12
Zr-Sol/ACF 699.99 1.82 0.32 0.29 0.14
Zr-MOF/ACF9 562.78 2.03 0.29 1.46 0.84
Zr-MOF/ACF18 538.04 1.91 0.26 0.26 0.55

图7

不同样品对CEES的降解性能"

表2

不同样品的力学性能"

试样 断裂强度/
MPa
试样 断裂强度/
MPa
ACF 0.221 Zr-MOF/ACF12 0.411
Zr-Sol/ACF 0.538 Zr-MOF/ACF15 0.400
Zr-MOF/ACF3 0.461 Zr-MOF/ACF18 0.305
Zr-MOF/ACF6 0.451 Zr-MOF/ACF21 0.299
Zr-MOF/ACF9 0.417
[1] PUGLISI R, MINEO P G, PAPPALARDO A, et al. Supramolecular detection of a nerve agent simulant by fluorescent Zn-Salen oligomer receptors[J]. Molecules, 2019, 24(11): 2160-2173.
doi: 10.3390/molecules24112160
[2] PICARD B, CHATAIGNER I, MADDALUNO J, et al. Introduction to chemical warfare agents, relevant simulants and modern neutralization methods[J]. Organic & Biomolecular Chemistry, 2019, 17(27): 6528-6537.
[3] DECOSTE J B, PETERSON G W. Metal-organic frameworks for air purification of toxic chemicals[J]. Chemical Reviews, 2014, 114(11): 5695-727.
doi: 10.1021/cr4006473 pmid: 24750116
[4] VALE A, MARRS T C, RICE P. Chemical terrorism and nerve agents[J]. Medicine, 2007, 35(2): 573-575.
doi: 10.1016/j.mpmed.2007.07.012
[5] OHEIX E, GRAVEL E, DORIS E. Catalytic processes for the neutralization of sulfur mustard[J]. Chemistry-A European Journal, 2021(1): 54-68.
[6] 吕凯敏, 戴宏钦. 化学防护服的研究进展[J]. 纺织学报, 2020, 41(5): 191-196.
LÜ Kaimin, DAI Hongqin. Research progress of chemical protective clothing[J]. Journal of Textile Research, 2020, 41(5): 191-196.
[7] 栗辰飞, 刘元军, 赵晓明. 生化防护服的研究进展[J]. 纺织学报, 2022, 43(7): 207-216.
LI Chenfei, LIU Yuanjun, ZHAO Xiaoming. Research progress of biochemical protective clothing[J]. Journal of Textile Research, 2022, 43(7): 207-216.
[8] 刘其霞, 周逸如, 杨智联, 等. 透气式球形活性碳化学防护服复合面料的制备及其性能[J]. 纺织学报, 2019, 40(6): 183-189.
LIU Qixia, ZHOU Yiru, YANG Zhilian, et al. Preparation and properties of spherical activated carbon-based composite fabric for permeable chemical protective clothing[J]. Journal of Textile Research, 2019, 40(6): 183-189.
[9] ZHAO S Y, CHEN Z Y, WEI N, et al. Highly efficient cooperative catalysis of single-site lewis acid and brønsted acid in a metal-organic framework for the biginelli reaction[J]. Inorganic Chemistry, 2019, 58(12): 7657-7661.
doi: 10.1021/acs.inorgchem.9b00816
[10] JOSEPH E, MONDLOCH, MICHAEL J, et al. Destruction of chemical warfare agents using metal-organic frameworks[J]. Nature Materials, 2015, 14(5): 512-516.
doi: 10.1038/nmat4238 pmid: 25774952
[11] LIU Y, XUAN W, CUI Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation[J]. Advanced Materials, 2010, 22(37): 4112-4135.
doi: 10.1002/adma.v22:37
[12] CHEN Z, ISLAMOGLU T, FARHA O K. Toward base heterogenization: a zirconium metal-organic framework/dendrimer or polymer mixture for rapid hydrolysis of a nerve-agent simulant[J]. ACS Applied Nano Materials, 2019, 2(2): 1005-1008.
doi: 10.1021/acsanm.8b02292
[13] MOON S Y, LIU Y Y, JOSEPH T, et al. Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework[J]. Angewandte Chemie, 2015, 127(23): 6899-6903.
doi: 10.1002/ange.v127.23
[14] KATZ M J, MOON S Y, MONDLOCH J E, et al. Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH2[J]. Chemical Science, 2015, 6(4): 2286-2291.
doi: 10.1039/c4sc03613a pmid: 29308142
[15] ZHOU Y, GAO Q, ZHANG L, et al. Combining two into one: a dual-function H5PV2Mo10O40@MOF-808 composite as a versatile decontaminant for sulfur mustard and soman[J]. Inorganic Chemistry, 2020, 59(16): 11595-11605.
doi: 10.1021/acs.inorgchem.0c01392
[16] PETERSON G W, MOON S Y, WAGNER G W, et al. Tailoring the pore size and functionality of UiO-type metal-organic frameworks for optimal nerve agent destruction[J]. Inorganic Chemistry, 2015, 54(20): 9684-9686.
doi: 10.1021/acs.inorgchem.5b01867 pmid: 26431370
[17] 张博宁, 孙亚昕, 吴遥, 等. MOF-808@PAN纳米纤维膜的制备及其降解芥子气模拟剂性能[J]. 精细化工, 2021, 38(6):1177-1182.
ZHANG Boning, SUN Yaxin, WU Yao, et al. Preparation of MOF-808@PAN-nanofiber membrane and its degradation performance of mustard gas simulation agent[J]. Fine Chemicals. 2021, 38(6): 1177-1182.
[18] ZHAO J, LEE D T, YAGA R W, et al. Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs[J]. Angewandte Chemie, 2016, 55(42): 13224-13228.
[19] 李阳, 沈晨康, 王碧佳, 等. 负载UiO-66-NH2棉织物的制备及化学战剂降解性能表征[J]. 纤维素科学与技术, 2020, 28(1): 8-15,25.
LI Yang, SHEN Chenkang, WANG Bijia, et al. Preparation of UiO-66-NH2 loaded cotton fabric and its characterization of chemical warfare agents degrad-ation[J]. Journal of Cellulose Science and Technology, 2020, 28(1): 8-15,25.
[20] JIANG F, WANG S S, LIU B, et al. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts[J]. ACS Catalysis, 2020, 10(19):11493-11509.
doi: 10.1021/acscatal.0c03324
[1] 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131.
[2] 程绿竹, 王宗乾, 王邓峰, 申佳锟, 李长龙. 高中空生物质活性碳纤维制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2021, 42(02): 129-134.
[3] 沈岳, 蒋高明, 刘其霞. 梯度结构活性碳纤维毡吸声性能分析[J]. 纺织学报, 2020, 41(10): 29-33.
[4] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[5] 李树锋, 程博闻, 罗永莎, 王辉, 徐经伟. 聚丙烯腈基活性中空碳纳米纤维制备及其性能[J]. 纺织学报, 2019, 40(10): 1-6.
[6] 陈威 关晋平 陈国强 匡小慧. 静电层层自组装法整理多巴胺改性涤/棉混纺织物的阻燃性能[J]. 纺织学报, 2017, 38(09): 94-100.
[7] 任元林 张悦 曾倩 谷叶童. 织物阻燃涂层新工艺的研究进展[J]. 纺织学报, 2017, 38(09): 168-173.
[8] 曾凡龙 刘占莲 韩芹 曹谦芝 仲林 肖婷婷. 活性炭纤维/NiO/MnO2复合电极的结构及其电化学性能[J]. 纺织学报, 2013, 34(10): 1-0.
[9] 张秀林 张越 刘庆生 邓炳耀. TiO2/ACF光催化材料的制备与特性[J]. 纺织学报, 2011, 32(8): 21-24.
[10] 李全明;万雅波;陈东生. 活性碳纤维的制备及性能表征[J]. 纺织学报, 2004, 25(02): 9-10.
[11] 李永贵;葛明桥. 活性碳纤维处理印染废水的研究[J]. 纺织学报, 2003, 24(05): 68-69.
[12] 李永贵;高卫东;陈东生;敖玉辉. 聚丙烯腈基活性碳纤维非织造布的研制[J]. 纺织学报, 2002, 23(02): 65-66.
[13] 陈东生;甘应进;李全明;于忠臣;吴坚;朱焕良. 活性碳纤维在净化过滤水滤嘴中的应用[J]. 纺织学报, 2001, 22(06): 65-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!