纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 144-152.doi: 10.13475/j.fzxb.20220709101

• 染整与化学品 • 上一篇    下一篇

聚乙烯基膦酸/多乙烯多胺层层自组装阻燃棉织物的制备及其性能

钱耀威1,2, 殷连博1,2, 李家炜1,2,3(), 杨晓明4, 李耀邦4, 戚栋明1,2,3   

  1. 1.浙江理工大学 绿色低碳染整技术浙江省工程研究中心, 浙江 杭州 310018
    2.浙江省现代纺织技术创新中心,浙江 绍兴 312000
    3.浙江省绿色清洁技术及洗涤用品重点实验室, 浙江 丽水 323000
    4.浙江欧仁新材料有限公司, 浙江 嘉兴 314100
  • 收稿日期:2022-07-26 修回日期:2023-06-15 出版日期:2023-09-15 发布日期:2023-10-30
  • 通讯作者: 李家炜(1985—),男,副研究员,博士。主要研究方向为纺织品功能整理。E-mail:jiaweili@zstu.edu.cn
  • 作者简介:钱耀威(2000—),男。主要研究方向为纺织品阻燃功能整理技术。
  • 基金资助:
    中国纺织工业联合会应用基础研究项目(J202207);浙江省“尖兵”“领雁”研发攻关计划项目(2022C03052);中国博士后科学基金资助项目(2022M722816);浙江省大学生科技创新活动计划项目(2022R06B062)

Preparation and properties of flame retardant cotton fabrics by layer-by-layer assembly of polyvinylphosphonic acid and polyethylene polyamine

QIAN Yaowei1,2, YIN Lianbo1,2, LI Jiawei1,2,3(), YANG Xiaoming4, LI Yaobang4, QI Dongming1,2,3   

  1. 1. Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, Zhejiang 312000, China
    3. Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui, Zhejiang 323000, China
    4. Zhejiang Ouren New Materials Co., Ltd., Jiaxing, Zhejiang 314100, China
  • Received:2022-07-26 Revised:2023-06-15 Published:2023-09-15 Online:2023-10-30

摘要:

为了实现棉织物的环保阻燃,以乙烯膦酸(VPA)作为单体,合成聚乙烯基膦酸(PVPA),并与多乙烯多胺(PEPA)构建阻燃体系,采用层层自组装(LBL)法在棉织物表面制备阻燃涂层,借助扫描电子显微镜、氧指数测定仪、锥型量热仪、热重分析仪和红外光谱仪联用技术等分析了涂层阻燃棉织物的表面形貌和阻燃性能,探究了气相和凝聚相阻燃机制,并测定了阻燃处理后棉织物的物理性能。结果表明:采用LBL法制备PVPA/PEPA涂层阻燃整理棉织物,当整理层数达到12时,阻燃棉织物的极限氧指数(LOI)达到29.8%,垂直燃烧试样离开火焰后自熄,并经10次标准洗涤后,LOI值为27.1%,相较于纯棉织物,阻燃棉织物的热释放量和总热释放量分别降低了16.8%和19.7%。通过形成磷酸化结构改善了炭保护层的稳定性,阻隔了气体及热量的传递,增强了棉织物的阻燃性能,同时赋予棉织物良好的力学性能。

关键词: 棉织物, 阻燃, 层层自组装, 聚乙烯基膦酸, 多乙烯多胺

Abstract:

Objective Cotton fibers are ideal materials for clothing, furniture and bedding because of good hygroscopicity, wear comfort and biodegradabity. However, cotton fabrics are flammable and have been identified as one of the main sources of household fire. This research aims to enhance the flame retardance of cotton fabrics using a flame retardant system composed of polyvinylphosphonic acid (PVPA) and polyethylene polyamine (PEPA) to achieve environmental-friendly flame retardant cotton fabrics.

Method Vinylphosphonic acid (VPA) was used as a monomer to synthesize PVPA, and a flame retardant coating system on cotton fabrics with PVPA and PEPA was constructed via layer-by-layer assembly (LBL). The surface morphology, flame retardancy and physical properties of coated cotton fabrics were measured, and the flame-retardant mechanism of gas phase and condensed phase were explored.

Results In this study, the VPA was successfully prepared using 2,2'-azobis[2-methylpropionamidine] dihydrochloride (AIBA) as initiator, and its conversion rate reached 93.6% by means of 31P nuclear magnetic resonance (31P NMR) (Fig. 2). When the PVPA/PEPA flame-retardant system was prepared by the layer-by-layer assembly method, the flame retardant coating formed evenly on cotton fabric surfaces through the measurement of Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM) (Fig. 3 and 5). When the number of finishing layers reached 12, the weight gain of the coated cotton fabric was 38.0%, and the limiting oxygen index (LOI) of flame retardant cotton fabric reached 29.8%. The research showed that the flame of the coated cotton fabric self-extinguished and the damaged length was 31 mm during the vertical burning test. After 10 standard washing cycles, the LOI value of the coated cotton fabric was 27.1% (Tab. 1). The cone calorimetric test showed that the peak heat release (PHRR) and total heat release (THR) of coated cotton fabrics decreased by 16.8% and 19.7%, respectively, lower than that of uncoated cotton fabrics (Fig. 7). The above results indicated that the coated cotton fabric had good flame retardant property. Accordingly, the volatile components of flame retardant coated cotton during thermal degradation were studied by the combination technology of thermogravimetric analyzer and infrared spectrometer (TG-IR) (Fig. 9), and the structure of residual carbon after vertical burning test was investigated by SEM and X-ray photoelectron spectroscopy (XPS) (Figs. 10 and 11). These results indicated that the flame-retardant coating played a key role in the cohesive phase flame retardant process, when cotton fabrics were burned, forming a stable carbon insulation layer, insulating the transfer of heat and gas, and inhibiting the occurrence of combustion reactions. Besides, it was found that from the test results of electronic fabric strength machines and whiteness meters, the tensile strength and whiteness values decreased from 730.7 N and 89.2 % to 512.6 N and 74.2%, respectively, after the flame retardant coating, which suggested the flame-retardant system had a small impact on the breaking strength and whiteness of the fabric (Tab. 4). It ascribed that the alkaline PEPA reduce the acid embrittlement caused by VPA on cotton fabrics in the flame-retardant coating system.

Conclusion A flame-retardant coating was prepared by the layer-by-layer assembly method, which was applied to flame retardant coated cotton fabrics, achieving good physical properties of cotton fabrics while flame retardant finishing, and meeting the requirements of household curtains, interior decoration, and industrial textile fabrics.

Key words: cotton fabric, flame retardant, layer-by-layer assembly, polyvinylphosphonic acid, polyethylene polyamine

中图分类号: 

  • TS193.5

图1

聚乙烯基膦酸的合成和聚乙烯基膦酸/多乙烯多胺层层自组装法整理棉织物的过程"

图2

聚乙烯基膦酸的31P NMR分析"

图3

纯棉织物(a)和 Cot-12BL(b)的SEM照片"

图4

Cot-12BL的表面元素分布图"

图5

涂层整理前后棉织物的红外光谱图"

表1

涂层整理前后棉织物的极限氧指数值、耐久性和垂直可燃性"

样品 标准洗涤下的极限氧指数/% 垂直燃烧性能
0次 5次 10次 续燃
时间/s
阴燃
时间/s
损毁
长度/mm
纯棉织物 18.0 18.0 17.9 26 52 0
Cot-2BL 20.1 19.3 18.5 0 0 90
Cot-6BL 23.7 23.1 22.5 0 0 69
Cot-10BL 28.2 27.4 26.8 0 0 36
Cot-12BL 29.6 28.6 27.1 0 0 31

图6

纯棉织物、Cot-2BL、Cot-10BL、Cot-12BL的垂直燃烧照片"

表2

纯棉织物和Cot-12BL的锥形量热数据"

样品 TTI/s PHRR/
(kW·m-2)
THR/
(MJ·m-2)
FGR/
(kW·(m2·s)-1)
TSR/
(m2·m-2)
CO2与CO质量比/
(kg·kg-1)
残炭量/%
纯棉织物 12 251.8 7.6 7.8 13.2 25.3 0
Cot-12BL 13 209.6 6.1 6.7 61.9 0.5 3.6

图7

纯棉织物与Cot-12BL的HRR, THR, TSR和残炭量曲线"

图8

纯棉织物与Cot-12BL的TGA和DTG曲线图"

表3

纯棉与Cot-12BL在氮气气氛下的TGA数据"

样品 初始降解
温度/℃
最大热降解
温度/℃
最大热降解
速率/
(%·min-1)
700 ℃时的
残炭量/%
纯棉织物 315 364 18.8 6.5
Cot-12BL 217 308 8.5 30.4

图9

纯棉织物与Cot-12BL典型热解产物的强度图"

图10

阻燃棉织物残炭的SEM照片"

图11

阻燃棉织物残炭的XPS谱图"

表4

纯棉织物和Cot-12BL的物理性能"

样品 白度/
%
断裂
强力/
N
断裂
伸长
率/%
透气率/
(mm·s-1)
相对
硬挺
度/%
相对
柔软
度/%
原棉织物 89.2 730.7 17.4 59.9 46.5 69.0
Cot-12BL 74.2 512.6 14.6 21.6 41.6 80.2
[1] 骆晓蕾, 李紫嫣, 马亚男, 等. 纺织品生态阻燃技术研究进展[J]. 纺织学报, 2021, 42(5): 193-202.
LUO Xiaolei, LI Ziyan, MA Yanan, et al. Research progress on textile eco-flame retardant technology[J]. Journal of Textile Research, 2021, 42(5):193-202.
[2] ÖZER M, GAAN S. Recent developments in phosphorus based on flame retardant coatings for textiles: synthesis, applizations and performance[J]. Progress in Organic Coatings, 2022. DOI: 10.1016/j.porgcoat.2022.107027.
[3] ALONGI J, CARISO F, FRACHE A, et al. Layer by Layer coatings assembled through dipping, vertical or horizontal spray for cotton flame retardancy[J]. Carbohydrate Polymers, 2013, 92(1): 114-119.
doi: 10.1016/j.carbpol.2012.08.086 pmid: 23218273
[4] 曾凡鑫, 秦宗益, 沈玥莹, 等. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(1): 103-111.
ZENG Fanxin, QIN Zongyi, SHEN Yueying, et al. Preparation and flame retardant properties of self-extinguishing cotton fabrics by spray-assisted layer-by-layer self-assembly technology[J]. Journal of Textile Research, 2021, 42(1): 103-111.
[5] 刘新华, 刘海龙, 方寅春, 等. 聚乙烯亚胺/植酸层层自组装阻燃涤/棉混纺织物制备及其性能[J]. 纺织学报, 2021, 42 (11): 103-109.
LIU Xinhua, LIU Hailong, FANG Yanchun, et al. Preparation and properties of flame retardant polyester/cotton blend fabrics by layer-by-layer assemblying polyethylenimine/phytic acid[J]. Journal of Textile Research, 2021, 42(11): 103-109.
[6] SHI X, LIU Q, LI X, et al. Construction phosphorus/nitrogen-containing flame-retardant and hydrophobic coating toward cotton fabric via layer-by-layer asse-mbly[J]. Polymer Degradation and Stability, 2022. DOI: 10.1016/j.polymdegrads.2022.109839.
[7] VASILJEVIC J, JERMAN I, JAKKSA G, et al. Functionalization of cellulose fibers with DOPO-polysilsesquioxane flame retardant nanocoating[J]. Cellulose, 2015, 22(3): 1893-1910.
doi: 10.1007/s10570-015-0599-x
[8] 范万键, 颜晓杰, 李家炜, 等. 含DOPO磷硅杂化溶胶处理涤纶织物阻燃性能[J]. 印染, 2018, 44(13):1-6.
FAN Wanjian, YAN Xiaojie, LI Jiawei, et al. Flame-retardancy of polyester fabric treated with DOPO-based phosphorous-and silicon-containing hybrid sol[J]. China Dyeing & Finishing, 2018, 44(13):1-6.
[9] ALONG J, CARLETTO R A, DI BLASIO A, et al. DMA: a novel, green naturel flame retardant and suppressant for cotton[J]. Journal of Materials Chemistry A, 2013, 1(15): 4779-4785.
doi: 10.1039/c3ta00107e
[10] ALONG J, CARLETTO R A, DI BLASIO A, et al. Intrinsic intumescent like flame retardant properties of DNA-treated cotton fabrics[J]. Carbohydrate Polymer, 2013, 96(1): 296-304.
doi: 10.1016/j.carbpol.2013.03.066
[11] MACARIE L, LLIA G. Poly(vinylphosphonic acid) and its derivatives[J]. Progress in Polymer Science, 2010, 35(8): 1078-1092.
doi: 10.1016/j.progpolymsci.2010.04.001
[12] ROSACE G, COLLENI C, TROVATO V, et al. Vinylphosphonic acid/methacrylamide system as a durable intumescent flame retardant for cotton fabric[J]. Cellulose, 2017, 24(7): 3095-3108.
doi: 10.1007/s10570-017-1294-x
[13] HAJJ R, El HAGE R, SONNIER R, et al. Grafting of phosphorus flame retardants on flax fabrics: comparison between two routes[J]. Polymer Degradation and Stability, 2018 (147): 25-34.
[14] LI J, TONG W, YI L. Flame-retardant composite coatings for cotton fabrics fabricated by using oxygen plasma-induced polymerization of vinyl phosphonic acid/cyclotetrasiloxane[J]. Textile Research Journal, 2019, 89(23/24): 5053-5066.
doi: 10.1177/0040517519848158
[15] GU J, YAN X, LI J, et al. Durable flame-retardant behavior of cotton textile with a water-based ammonium vinyl phoshonate[J]. Polymer Degradation and Stability, 2021. DOI: 10.1016/j.polymdegradsTab.2021.109658.
[16] DUAN H, LI J, GU J, et al. One-pot preparation of cotton fibers with simultaneous enhanced durable flame-retardant and antibacterial properties by grafting copolymerized with vinyl monomers[J]. Reactive and Functional Polymers, 2022. DOI: 10.1016/j.reactfunctpolym.2022.105438.
[17] SHAO Z, DENG C, YAN Y, et al. An efficient mono-component polymeric intumescent flame retardant for polypropylene: preparation and application[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 7363-7370.
[18] SEILER L, LOISEAU J, LEISING F, et al. Acceleration and improved control of aqueous RAFT/MADIX polymerization of vinylphosphonic acid in the presence of alkali hydroxides[J]. Polymer Chemistry, 2017, 8(25): 3825-3832.
doi: 10.1039/C7PY00747G
[19] 李平阳, 付灿, 董玲玲. 阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2022, 43(6):107-114.
LI Pingyang, FU Can, DONG Lingling. Preparation and performance of flame retardant and hydrophobic cotton fabric[J]. Journal of Textile Research, 2022, 43(6):107-114.
[20] LIU Y, ZHANG J, REN Y, et al. Synthesis of a phosphorus-and nitrogen-containing flame retardant and the fabrication of flame retardant cotton[J]. Textile Research Journal, 2022, 92(1/2): 3426-3442.
doi: 10.1177/00405175221074069
[1] 刘其霞, 张天昊, 季涛, 葛建龙, 单浩如. 锆基金属有机骨架材料/活性碳纤维复合材料的制备及其降解性能[J]. 纺织学报, 2023, 44(09): 134-143.
[2] 帅旗, 孙硕, 成世杰, 张宏伟, 左丹英. 氮硼掺杂碳量子点/异氰酸酯型微胶囊复合整理棉织物及其防紫外线性能[J]. 纺织学报, 2023, 44(08): 126-132.
[3] 尚小愉, 朱坚, 王滢, 张先明, 陈文兴. 侧基含磷阻燃共聚酯的制备及其固相增黏反应[J]. 纺织学报, 2023, 44(07): 1-9.
[4] 郭玉秋, 钟毅, 徐红, 毛志平. 拼混活性染料染色多组分定量分析方法[J]. 纺织学报, 2023, 44(07): 141-150.
[5] 陈家辉, 梁跃耀, 陈妮, 房宽峻. 棉织物喷墨印花打印方式的调控及其应用[J]. 纺织学报, 2023, 44(07): 159-166.
[6] 谭家玲, 刘佳音, 于伟东, 殷允杰, 王潮霞. 基于SiO2微胶囊的多色谱温敏变色棉织物制备及其性能[J]. 纺织学报, 2023, 44(07): 167-174.
[7] 王伟, 吴嘉欣, 张晓云, 张传杰, 宫兆庆. 制浆用废旧棉织物的脱色性能及其机制[J]. 纺织学报, 2023, 44(07): 175-183.
[8] 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167.
[9] 杨海富, 罗丽娟, 师建军, 马晓光, 郑振荣. 阻燃防水多功能涤纶篷布的制备及其性能[J]. 纺织学报, 2023, 44(06): 168-174.
[10] 谭启飞, 陈梦莹, 马晟晟, 孙明祥, 代春鹏, 罗仑亭, 陈益人. 湖羊毛非织造阻燃吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(05): 147-154.
[11] 胡安钟, 王成成, 钟子恒, 张丽平, 付少海. 氮化硼纳米片掺杂型快速响应温致变色织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 164-170.
[12] 王小艳, 马子婷, 许长海. 基于高耐碱高耐氧漂分散染料的涤盖棉织物漂染一浴加工工艺[J]. 纺织学报, 2023, 44(05): 38-45.
[13] 陈智杰, 蒋继康, 虞一浩, 符晔, 吴金丹, 戚栋明. 硅磷改性碳酸钙的合成及其在聚酰胺涂层中应用[J]. 纺织学报, 2023, 44(04): 146-153.
[14] 齐浩彤, 张林森, 侯秀良, 徐荷澜. 废食用油-水无盐体系活性染色棉织物的服用性能[J]. 纺织学报, 2023, 44(03): 126-131.
[15] 吴俊雄, 尉霞, 罗璟娴, 闫姣儒, 吴磊. 阻燃腈纶/芳纶包芯纱的制备及其紫外光稳定性[J]. 纺织学报, 2023, 44(03): 60-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!