纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 60-67.doi: 10.13475/j.fzxb.20220507401

• 纺织工程 • 上一篇    下一篇

六基色纤维混纺构建的全色相混色模型及其色纺纱纺制

孙显强1, 薛元1(), 刘曰兴2, 张国清2, 刘立霞2   

  1. 1.江南大学 纺织科学与工程学院, 江苏 无锡 214122
    2.愉悦家纺有限公司, 山东 滨州 256600
  • 收稿日期:2022-05-26 修回日期:2023-02-24 出版日期:2023-09-15 发布日期:2023-10-30
  • 通讯作者: 薛元(1962—),男,教授,博士。主要研究方向为数字化纺纱技术和纤维材料成形技术。E-mail:fzxueyuan@qq.com
  • 作者简介:孙显强(1993—),男,博士生。主要研究方向为数字化纺纱技术。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(JUSRP51631A);中国纺织工业联合会应用基础研究资助项目(J201506);江苏高校优势学科建设工程资助项目(苏政办发[2014]37号);浙江省2022年度“尖兵”“领雁”研发攻关计划项目(2022C01188)

Full color phase mixing model constructed by blending of six primary colored fibers and colored yarn production

SUN Xianqiang1, XUE Yuan1(), LIU Yuexing2, ZHANG Guoqing2, LIU Lixia2   

  1. 1. College of of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Yuyue Home Textile Co., Ltd., Binzhou, Shandong 256600, China
  • Received:2022-05-26 Revised:2023-02-24 Published:2023-09-15 Online:2023-10-30

摘要:

为实现预定色彩纺纱,将数控纺纱调控彩色纤维混纺比机制与六基色纤维全色相网格化混色模型相结合,构建了“多通道数控牵伸比、多元基色纤维混色比、纱线色彩”的三要素协同调控机制;基于红、黄、绿、蓝、青、品红等六基色纤维构建了色相调控范围为0~360°的包含60个网格点的全色相混色模型;基于网格点序号设计纺纱工艺参数并纺制了60种不同混色比的色纺纱,用其织成色织物;测试分析色纺纱条干均匀度、毛羽、断裂强力等外观质量与力学性能指标。结果表明:所纺60种纱线色彩变化趋势与六基色纤维全色相网格化混色模型色彩分布规律具有一致性;所纺纱线各项指标达到GB/T 398—2018《棉本色纱线》二级水平。

关键词: 色纺纱, 混色模型, 数控纺纱, 细纱机, 全色相混色

Abstract:

Objective In conventional spinning process, colored yarns are prepared by blending different colored fibers through the process of fiber blending, grabbing, and drawing, but the process does not support online regulation, real-time control, and accurate digital adjustment of the yarn color. Inspired by color inkjet printing, the purpose of the paper is to investigate how to build a multi-channel computer numerical control (CNC) spinning system for making colored yarns of a full color phase. To this end, using the Newton's three primary-color principle and through digital blending of the six primary colored fibers of red (R), yellow (Y), green (G), cyan (C), blue (B), and magenta (M), the color hue of the forming yarn can be changed from 0 to 360°, enabling the spinning of colored yarns of full color phase.

Method The mechanism of controlling the mixing ratios of colored fibers by CNC spinning was combined with the full color phase mixing model of with six primary colored fibers, and the "multi-channel drafting ratios - colored fiber mixing ratios-colors of yarns" synergistic regulation mechanism was established. Based on the six primary colored fibers of red, yellow, green, blue, cyan and magenta, a full color phase mixing model with 60 grid points and a hue control of 0-360° was built. The spinning process parameters were designed based on the grid point number and a total of 60 different colored yarns and their fabrics in six color systems, consisting of R-Y, Y-G, G-C, C-B, B-M, and M-R, were fabricated.

Results According to the fiber mixing ratio in the above model, 60 colored fabrics were obtained (Fig. 6). The color variation regularity was consistent with the regularity of mixing ratios of the six primary colored fibers, and also has consistency with the color distribution regularity of the full color phase grid mixing model. The colored yarns were measured and analyzed for appearance and mechanical properties such as yarn unevenness, surface hairiness and tensile strength. In terms of evenness, the coefficient of variation (CV) varied with the mixing ratios, with a minimum of 12.40%, a maximum of 16.50%, and an average of 14.15% (Tab. 4). Its corresponding unevenness (U) also varied with the mixing ratios, with a minimum of 9.23%, a maximum of 12.73% and an average of 10.68%. Among them, the number of thick parts and thin parts was less than 220, and the number of neps varied from 50 to 95, with a mean value of 72. Regarding the surface hairiness, the number of 3 mm hairiness ranged from 46 to 64 (Tab. 5). Among the hairiness of 1-3 mm, the samples with mixing ratios of 10∶0 and 5∶5 had relatively small numbers of hairiness, while those with mixing ratios of 9∶1 and 1∶9 had more hairiness. With respect to the tensile strength, the minimum breaking strength was 442.70 cN and the maximum was 527.70 cN, and the minimum elongation was 5.72% and the maximum was 6.58% (Tab. 6). Among them, the strength CV value ranged from 1.75% to 3.74%, with an average of 2.91%, and the elongation CV value ranged from 1.46% to 6.13%, with an average of 3.78%.

Conclusion The research results proved that the mixing ratios of colored fibers in the forming yarns can be adjusted based on the regulation of the multi-channel drafting ratios by using the multi-channel CNC spinning platform, and furthermore, the color of the forming yarns can be controlled. By building a full color phase gridded mixing model through the six primary colors of R, Y, G, C, B and M, the color mixing of full color phase can be realized in the range of 0°-360° according to the six color system gridded color mixing of R-Y, Y-G, G-C, C-B, B-M and M-R. by combining the regulation mechanism of multi-channel CNC spinning with the full color phase mixing model, 60 different colors of yarns distributed in six color systems of R-Y, Y-G, G-C, C-B, B-M and M-R were prepared, which realized the spinning of colored yarns of full color phase. It is proved that the process of the spinning of colored yarn of full color phase is feasible by testing the color, appearance and mechanical properties of the forming yarn, and the indexes of the yarns are substantially in line with the second level of the standard GB/T 398—2018 "cotton gray yarn".

Key words: colored spun yarn, color mixing model, computer numerical control spinning, spinning machine, color mixing of full color phase

中图分类号: 

  • TS104.1

图1

二元耦合混色样色谱"

图2

全色相矩形色谱"

图3

全色相环形色谱"

图4

数控纺纱系统实物图"

表1

全色相色纺纱的颜色值"

α,β混
色纱颜
色值
β,γ混
色纱颜
色值
γ,δ混
色纱颜
色值
δ,ε混
色纱颜
色值
ε,ω混
色纱颜
色值
ω,α混
色纱颜
色值
255,0,0 255,255,0 0,255,0 0,255,255 0,0,255 255,0,255
255,26,0 230,255,0 0,255,26 0,230,255 26,0,255 255,0,230
255,51,0 204,255,0 0,255,51 0,204,255 51,0,255 255,0,204
255,77,0 179,255,0 0,255,77 0,179,255 77,0,255 255,0,179
255,102,0 153,255,0 0,255,102 0,153,255 102,0,255 255,0,153
255,128,0 128,255,0 0,255,128 0,128,255 128,0,255 255,0,128
255,153,0 102,255,0 0,255,153 0,102,255 153,0,255 255,0,102
255,179,0 77,255,0 0,255,179 0,77,255 179,0,255 255,0,77
255,204,0 51,255,0 0,255,204 0,51,255 204,0,255 255,0,51
255,230,0 26,255,0 0,255,230 0,26,255 230,0,255 255,0,26

图5

用于六基色纤维的混色色谱"

图6

色纺纱织物实物图"

表2

全色相织物的实测颜色值"

R,Y织物颜色值 Y,G织物颜色值 G,C织物颜色值 C,B织物颜色值 B,M织物颜色值 M,R织物颜色值
119,31,43 226,178,0 0,101,81 0,117,139 36,65,112 153,16,72
122,45,40 146,151,33 0,98,88 0,110,133 46,57,102 150,20,66
126,62,43 107,137,51 0,101,94 0,98,130 81,53,99 143,28,62
140,77,43 100,129,52 0,104,100 0,94,127 73,47,89 141,25,60
139,84,39 102,133,53 0,106,107 0,85,120 89,48,92 135,27,60
149,89,33 93,125,55 0,103,102 0,90,124 91,42,84 134,26,56
156,95,34 80,121,58 0,106,107 13,83,119 85,48,93 129,26,57
164,98,32 71,115,64 0,107,110 0,86,123 96,42,82 128,28,53
172,112,27 56,114,70 0,110,119 21,80,118 108,42,85 123,27,54
197,135,15 41,108,71 0,110,126 0,72,113 130,30,73 120,27,44

表3

纱线的条干比较"

混纺比 变异系数
CV值/%
不匀率
U值/%
细节
(-50%)/
(个·km-1)
粗节
(+50%)/
(个·km-1)
棉结
(+200%)/
(粒·km-1)
10∶0 12.40 9.70 0 70 50
9∶1 16.17 12.73 0 220 80
4∶1 14.94 11.48 0 180 75
7∶3 14.56 11.13 0 160 75
3∶2 12.82 9.74 0 150 70
1∶1 12.42 9.23 0 90 55
2∶3 12.68 9.76 0 150 65
3∶7 13.68 10.33 0 160 70
1∶4 15.35 10.92 0 195 80
1∶9 16.50 11.79 0 210 95

表4

纱线毛羽比较"

混纺比 片段长度为10 m的不同长度毛羽数量
1 mm 2 mm 3 mm 4 mm 5 mm 6 mm 7 mm 8 mm 9 mm
10∶0 804 182 55 24 9 0 0 0 0
9∶1 958 258 64 20 70 4 1 0 0
4∶1 934 211 56 11 5 0 0 0 0
7∶3 838 193 59 18 5 1 1 0 0
3∶2 826 219 50 19 3 1 1 1 0
1∶1 764 178 51 15 7 2 0 0 0
2∶3 823 204 55 13 3 2 1 0 0
3∶7 843 183 46 14 5 0 0 0 0
1∶4 919 234 56 17 4 2 1 1 0
1∶9 948 248 54 9 3 1 0 0 0

表5

纱线强力比较"

混纺比 断裂强
力/cN
断裂伸长
率/%
断裂强力
CV值/%
断裂伸长率
CV值/%
10∶0 527.70 6.22 1.92 4.64
9∶1 442.70 5.72 3.48 1.46
4∶1 472.10 6.12 2.74 5.82
7∶3 480.90 6.14 3.65 4.92
3∶2 518.20 6.58 3.49 1.58
1∶1 521.30 6.23 1.75 2.82
2∶3 518.20 6.28 2.58 2.56
3∶7 483.90 6.33 3.74 6.13
1∶4 480.30 6.10 3.10 5.14
1∶9 461.30 6.45 2.67 2.69
[1] GURUDATT K, DE P, RAKSHIT A K, et al. Dope-dyed polyester fibers from recycled PET wastes for use in molded automotive carpets[J]. Journal of Industrial Textiles, 2016, 34(3): 167-179.
doi: 10.1177/1528083705049053
[2] LIU L, CHEN L, HU Z, et al. Fabrication and properties of dope-dyed poly(m-phenylene isophthalamide) fibers via wet spinning[J]. Fibers and Polymers, 2014, 15(7): 1387-1392.
doi: 10.1007/s12221-014-1387-1
[3] ROUETTE H K, WILSHIRE J F K, YAMASE I, et al. Dye-fiber bond stabilities of some reactive syes with wool[J]. Textile Research Journal, 1971, 41(6): 518-525.
doi: 10.1177/004051757104100607
[4] 关芳兰, 王建明, 闫彩艳. 桑蚕丝织物的数码印花工艺[J]. 纺织学报, 2012, 33(3): 89-92.
GUAN Fanglan, WANG Jianming, YAN Caiyan. Digital printing of silk fabrics[J]. Journal of Textile Research, 2012, 33(3): 89-92.
[5] CUI P, XUE Y, LIU Y. Manufacturing color-blended slub yarn: computer numerically controlled ring-spinning frame and Kubelka-Munk double constant theory[J]. AATCC Journal of Research, 2021, 8(3): 8-16.
[6] SUN X, CUI P, XUE Y. Construction and analysis of a three-channel numerical control ring-spinning system for segment colored yarn[J]. Textile Research Journal, 2021, 91(23-24): 2937-2949.
doi: 10.1177/00405175211020517
[7] GUO M, SUN F, GAO W. Theoretical and experimental study of color-alternation fancy yarns produced by a double-channel compact spinning machine[J]. Textile Research Journal, 2018, 89(14): 2741-2753.
doi: 10.1177/0040517518801149
[8] GUO M, SUN F, WANG L, et al. Analysis of the appearance of two-color cotton yarn by the double-channel spinning system[J]. Textile Research Journal, 2018, 89(9): 1712-1724.
doi: 10.1177/0040517518779250
[9] SUN X, XUE Y, CUI P, et al. Serialized gradient chromatography for the digital blending of colored fibers and spinning of gradient colored yarn[J]. Textile Research Journal, 2022, 92(1/2): 43-58.
doi: 10.1177/00405175211025773
[10] XIA Z, WANG H, WANG X, et al. A study on the relationship between irregularity and hairiness of spun yarns[J]. Textile Research Journal, 2011, 81(3): 273-279.
doi: 10.1177/0040517510380112
[11] XU W, XIA Z, ZHANG X, et al. Embeddable and locatable spinning[J]. Textile Research Journal, 2010, 81(3): 223-229.
doi: 10.1177/0040517510380780
[12] SALHOTRA K R. Quality improvement of sirospun yarns through use of finer rovings[J]. Textile Research Journal, 1990, 60(11): 687-689.
doi: 10.1177/004051759006001109
[13] SAWHNEY A P S, ROBERT K Q, RUPPENICKER G F. Device for producing staple-core / cotton-wrap ring spun yarns[J]. Textile Research Journal, 1989, 59(9): 519-524.
doi: 10.1177/004051758905900905
[14] TANG Z X, WANG X, FRASER W B, et al. An experimental investigation of yarn tension in simulated ring spinning[J]. Fibers and Polymers, 2004, 5(4): 275-279.
doi: 10.1007/BF02875525
[15] XIA Z, WANG H S, YE W. A method to produce ring single yarn with fancy and anti-frictional structure by feeding filaments in front of the front roller nip[J]. Textile Research Journal, 2019, 90(5/6): 631-640.
doi: 10.1177/0040517519877466
[1] 程璐, 马崇启, 周惠敏, 王颖, 夏鑫. 基于视觉特性的色纺纱全光谱配色算法优化[J]. 纺织学报, 2022, 43(10): 38-44.
[2] 邵景峰, 董梦园. 相依竞争失效模型下细纱机性能退化对成纱质量的影响[J]. 纺织学报, 2022, 43(06): 171-179.
[3] 朱文硕, 薛元, 徐志武, 于健, 曾德军. 对称循环渐变色彩设计及其色彩渐变纱纺制[J]. 纺织学报, 2022, 43(02): 116-124.
[4] 郭明华, 刘新金. 基于切断称重法的细纱机牵伸区内纤维变速点分布研究[J]. 纺织学报, 2021, 42(08): 71-75.
[5] 袁理, 熊莹, 谷迁, 王丹书, 霍达, 刘军平. 染色纤维与色纺纱线间的颜色传递规律及其影响因素[J]. 纺织学报, 2021, 42(05): 122-129.
[6] 程璐, 陈婷婷, 曹吉强, 王颖, 夏鑫. 基于光谱反射率的色纺纱计算机修色算法[J]. 纺织学报, 2020, 41(09): 39-44.
[7] 张婷婷, 薛元, 贺玉东, 刘曰兴, 张国清. 环锭数码纱Kubelka-Munk双常数配色模型构建及其色彩预测[J]. 纺织学报, 2020, 41(01): 50-55.
[8] 钱成, 刘燕卿, 刘新金, 谢春萍, 徐伯俊. 四罗拉集聚纺纱系统三维流场模拟与分析[J]. 纺织学报, 2019, 40(10): 56-61.
[9] 吴义伦, 李忠健, 潘如如, 高卫东, 张宁. 应用色纺纱图像的纬编针织物外观模拟[J]. 纺织学报, 2019, 40(06): 111-116.
[10] 袁理, 王丹书, 谷迁, 屠劭杰, 熊莹, 袁浩然, 刘军平, 鄢煜尘. 基于光谱泛相似测度的色纺纱线与织物间呈色规律[J]. 纺织学报, 2019, 40(02): 30-37.
[11] 刘建勇 黄烨 谭学强. 色纺纱的计算机配色研究进展[J]. 纺织学报, 2018, 39(11): 176-184.
[12] 刘春 谢春萍 苏旭中 刘新金. 假捻器在环锭细纱机上的应用效果及工艺优化[J]. 纺织学报, 2018, 39(07): 27-31.
[13] 杨瑞华 韩瑞叶 徐亚亚 薛元 王鸿博 高卫东. 数码转杯纺混色纱中有色纤维混合效果分析[J]. 纺织学报, 2018, 39(07): 32-38.
[14] 徐亚亚 杨瑞华 韩瑞叶 薛元 高卫东. 应用Kubelka-Munk双常数理论的数码转杯纱混色效果预测[J]. 纺织学报, 2018, 39(06): 36-41.
[15] 王雯雯 高畅 刘基宏. 应用卷积神经网络的细纱断纱锭位识别[J]. 纺织学报, 2018, 39(06): 136-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!