纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 120-126.doi: 10.13475/j.fzxb.20221102301

• 染整与化学品 • 上一篇    下一篇

聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理

张广知, 杨甫生, 方进(), 杨顺   

  1. 安徽工程大学 纺织服装学院, 安徽 芜湖 241000
  • 收稿日期:2022-11-08 修回日期:2023-07-10 出版日期:2023-10-15 发布日期:2023-12-07
  • 通讯作者: 方进(1991—),男,助理实验师,硕士。主要研究方向为功能纺织品研究与开发。E-mail:506759952@qq.com
  • 作者简介:张广知(1965—),男,副教授,硕士。主要研究方向为阻燃纺织品研究与开发。
  • 基金资助:
    安徽省教育厅高校自然科学研究重点项目(KJ2020A0353)

One bath flame retardant finishing of polylactic acid nonwoven by phytic acid/chitosan/boric acid

ZHANG Guangzhi, YANG Fusheng, FANG Jin(), YANG Shun   

  1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2022-11-08 Revised:2023-07-10 Published:2023-10-15 Online:2023-12-07

摘要:

为实现聚乳酸非织造布的阻燃抗熔滴功能,以壳聚糖(CS)、植酸(PA)、无机硼酸(BA)为主要原料,采用一浴法对聚乳酸非织造布进行阻燃整理。借助傅里叶红外光谱仪、扫描电镜、X射线能谱仪和热重分析仪、垂直法织物燃烧性能测试仪等表征和评价了聚乳酸非织造布的化学结构、表面形貌及表面元素分布、热稳定性能和阻燃性能。结果表明:聚乳酸非织造布经一浴法处理后,续燃、阴燃时间均为0 s,无熔滴,损毁长度仅为 11.3 cm,极限氧指数为34.6%;壳聚糖、植酸、硼酸以及复合物共沉积覆盖在聚乳酸纤维上,且磷、硼、氮等元素质量分数分别达到5.26%、12.91%、4.26%;氮气气氛下,阻燃处理样起始分解温度降低了139.3 ℃,800 ℃时的残炭量达到14.57%;PA/CS/BA一浴法生物质阻燃体系提高了聚乳酸非织造布的阻燃抗熔滴效果和热稳定性,符合凝聚相阻燃机制。该生物质阻燃体系为聚乳酸纺织品提供了一种新的环保阻燃和抗熔滴的策略,具有较好的市场应用潜力。

关键词: 聚乳酸纤维, 非织造布, 植酸, 壳聚糖, 阻燃整理, 一浴法

Abstract:

Objective Polylactic acid (PLA) fiber is an eco-friendly thermoplastic degradable synthetic fiber, which has biocompatibility and easy biodegradability but poor flame retardancy and easy to produce droplets. Biomass flame retardant has the advantages of innocuity, harmless and easy biodegradation. In order to solve the problem of flame retardancy and droplet resistance of PLA fiber products, it is urgent to develop flame retardancy technology for PLA fiber biomass to improve its flame retardancy and droplet resistance.

Method The subject design uses biomass chitosan (CS), biomass phytic acid (PA), and inorganic boric acid (BA) as the main raw materials, and uses the one bath method to finish the polylactic acid nonwovens with flame retardancy and anti-dripping, so as to improve their flame retardancy and anti-dripping performance. FT-IR, SEM, EDS and TG were used to characterize the chemical structure, surface morphology, surface element distribution, and thermal stability of flame retardant polylactic acid nonwovens. The flammability of flame retardant polylactic acid nonwovens was evaluated by vertical flammability tester and limiting oxygen index tester.

Results After the one bath method treatment of polylactic acid nonwovens, many granular or flaky substances co-deposited on the surface of the polylactic acid fiber, and the fiber surface became rough(Fig. 3), indicating that chitosan, phytic acid, boric acid and composites co-deposited on the fiber. After the one bath method treatment of polylactic acid nonwovens, the continuous burning and smoldering time of the flame retardant treated samples are zero, only a small amount of melting shrinkage without dripping, the carbon length is only 11.3 cm, and the limiting oxygen index of the original sample is 21.0% increased to 34.6% of the treated samples(Fig. 2 and Tab. 1), which improves the flame retardant and anti-dripping effect of polylactic acid nonwovens. After the one bath method treatment of polylactic acid nonwovens, the flame retardant treated samples contain not only carbon and oxygen, but also phosphorus (5.26%), boron (12.91%), nitrogen (4.26%) (Fig. 3 and Tab. 2). The reactive P—OH and B—OH in phytic acid and boric acid may form a complex with the —NH2 of chitosan(Fig. 4). It is beneficial to promote the catalytic dehydration of PLA fiber into carbon and improve its flame retardancy and anti-dripping performance. After the "one bath method" treatment of polylactic acid nonwovens, the thermal cracking of flame retardant-treated samples in a nitrogen atmosphere includes three processes: decomposition, thermal degradation, and carbonization. The initial decomposition temperature of flame retardant treated samples is 139.3 ℃ earlier (from 299.1 ℃ of the original sample to 159.8 ℃), and the carbon residue at 800 ℃ reaches 14.57% (Fig. 5 and Tab. 3).It is shown that the flame-retardant system is helpful to promote the catalytic dehydration of PLA fiber to form carbon, and the dense carbon layer has a blocking effect, which can inhibit the transfer of combustible gas and the diffusion of oxygen, and conforms to the condensed phase flame retardant mechanism (Fig. 6).

Conclusion Biomass chitosan (CS), biomass phytic acid (PA), and inorganic boric acid (BA) were used as the main raw materials to finish the polylactic acid nonwovens in a one bath method. The continuous burning time and smoldering time of the treated samples were zero, with no melt drops. The carbon length was only 11.3 cm, and the limiting oxygen index reached 34.6%. The thermal cracking in the nitrogen atmosphere was roughly divided into three stages: initial decomposition, thermal degradation, and carbonization. The carbon residue reached 14.57% at 800 ℃. The improvement of flame retardancy, droplet resistance, and thermal stability of PLA fiber conforms to the mechanism of condensed phase flame retardancy, and the influence of wearing properties (whiteness, breaking strength, etc.) is small. The one bath method flame retardant system of PA/CS/BA improves the flame retardancy, anti-dripping effect, and thermal stability of PLA nonwovens. It conforms to the flame retardant mechanism of the condensed phase. This flame-retardant system provides a new environment-friendly flameretardant and anti-droplet strategy for PLA fiber and has good market application potential.

Key words: polylactic acid fiber, nonwoven, phytic acid, chitosan, flame retardant finishing, one bath method

中图分类号: 

  • TS195.6

图1

聚乳酸非织造布PA/CS/BA一浴法阻燃整理流程图"

图2

聚乳酸非织造布的垂直燃烧结果"

表1

聚乳酸非织造布的阻燃效果"

样品 阻燃指标 断裂强力/N 白度/%
损毁长度/cm 续燃时间/s 阴燃时间/s LOI值/% 熔滴情况
原样 16.7 0 0 21.0 熔融,有熔滴 11.56 79.1
PA/CS阻燃处理样 14.1 0 0 30.2 收缩,无熔滴 9.58 71.5
PA/CS/BA阻燃处理样 11.3 0 0 34.6 收缩,无熔滴 9.49 72.1

图3

聚乳酸非织造布的SEM照片(×1 000)"

表2

阻燃聚乳酸非织造布的能谱分析结果"

样品 质量分数/%
C O P N B
原样 74.03 25.97 0 0 0
PA/CS阻燃处理样 63.56 23.71 8.60 4.13 0
PA/CS/BA阻燃处理样 30.10 47.47 5.26 4.26 12.91

图4

聚乳酸非织造布的红外光谱"

图5

聚乳酸非织造布的TG和DTG分析"

表3

聚乳酸非织造布氮气气氛下的TGA和DTG数据"

样品 T-5%/
T-50%/
Rmax/
(%·℃-1)
Tmax/
800 ℃时
的残炭
量/%
原样 299.1 349.8 2.42 360.9 0
PA/CS阻燃处理样 163.1 365.1 1.58 365.9 14.57
PA/CS/BA阻燃处理样 159.8 361.6 1.49 370.2 14.57

图6

聚乳酸非织造布残炭的SEM照片(×5 000)"

[1] LIU Shan, QIN Shuhao, HE Min, et al. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery[J]. Composites Part B: Engineering, 2020.DOI: 10.1016/j.compositesb.2020.108238.
[2] MURARIU M, BONNAUD L, YOANN P, et al. New trends in polylactide (PLA)-based materials: "Green" PLA-calcium sulfate (nano) composites tailored with flame retardant properties[J]. Polym Degrad Stabil, 2010, 95: 374-381.
doi: 10.1016/j.polymdegradstab.2009.11.032
[3] JUAN JosÉ Benvenuta-Tapiaa, EDUARDO Vivaldo-Limab. Reduction of molar mass loss and enhancement of thermal and rheological properties of recycled poly(lactic acid) by using chain extenders obtained from RAFT chemistry[J]. React Funct Polym, 2020.DOI: 10.1016/j.reactfunctpolym.
[4] JIN Fanlong, HUA Rongrong, PARK Soojin. Improvement of thermal behaviors of biodegradable poly(lactic acid)polymer: a review[J]. Composites Part B, 2019, 164: 287-296.
doi: 10.1016/j.compositesb.2018.10.078
[5] MNGOMEZULU Mfiso E, JOHN Maya J, JACOBS, et al. Review on flammability of biofibres and biocompo-sites[J]. Carbohydr Polym, 2014, 111: 149-182.
doi: 10.1016/j.carbpol.2014.03.071
[6] LIU L B, XU Y, DI Y F, et al. Simultaneously enhancing the fire retardancy and crystallization rate of biodegradable polylactic acid with piperazine-1,4-diylbis(diphenylphosphine oxide)[J]. Composites Part B: Engineering, 2020.DOI: 10.1016/j.compositesb.2020.108407.
[7] YIN W, CHEN L, LU F, et al. Mechanically robust, flame-retardant poly(lactic acid) biocomposites via combining cellulose nanofibers and ammonium polyphosphate[J]. ACS Omega, 2018, 3: 5615-5626.
doi: 10.1021/acsomega.8b00540 pmid: 31458762
[8] HOBBS C E. Recent advances in bio-based flame retardant additives for synthetic polymeric materials[J]. Polym, 2019.DOI: 10.3390/polym11020224.
[9] FENG J X, SU S P, ZHU J. An intumescent flame retardant system using β-cyclodextrin as a carbon source in polylactic acid (PLA)[J]. Polym Adv Technol, 2011, 22: 1115-1122.
doi: 10.1002/pat.v22.7
[10] ZHU T, GUO J, FEI B, et al. Preparation of methacrylic acid modified microcrystalline cellulose and their applications in polylactic acid: flame retardancy, mechanical properties, thermal stability and crystallization behavior[J]. Cellulose, 2019, 27: 2309-2323.
doi: 10.1007/s10570-019-02931-x
[11] CAYLA A, RAULT F, GIRAUD S, et al. PLA with intumescent system containing lignin and ammonium polyphosphate for flame retardant textile[J]. Polymers, 2016, 8(9): 331-346.
doi: 10.3390/polym8090331
[12] WANG Jingjing, REN Qian, ZHENG Wenge, et al. Improved flame-retardant properties of poly(lactic acid) foams using starch as a natural charring agent[J]. Ind Eng Chem Res, 2014, 53: 1422-1430.
doi: 10.1021/ie403041h
[13] XUE Q, WU Q, YAO Y, et al. A bio-safe cyclophosphazene derivative flame retardant for polylactic acid composites: flammability and cytotoxi-city[J]. Polym Adv Technol, 2020, 32(1): 368-378.
doi: 10.1002/pat.v32.1
[14] PAN Haifeng, WANG Wei, PAN Ying, et al. Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via layer-by-layer assembly of chitin derivatives[J]. Carbohydr Polym, 2015, 115: 516-524.
doi: 10.1016/j.carbpol.2014.08.084
[15] GALINA Laufer, CHRISTOPHER Kirkland, MORGAN Alexander B, et al. Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton[J]. Biomacromolecules, 2012, 13(9): 2843-2848.
doi: 10.1021/bm300873b pmid: 22897635
[16] YANG Y, WANG X, FEI B, et al. Preparation of phytic acid-based green intumescent flame retardant and its application in PLA nonwovens[J]. Polymers for Advanced Technologies, 2021, 32(8): 3039-3049.
doi: 10.1002/pat.v32.8
[17] SONG Qingping, ZHANG Ze, GAO Jiangang, et al. Synthesis and property studies of N-carboxymethyl chitosan[J]. Journal of Applied Polymer Science, 2011, 119(6): 3282-3285.
doi: 10.1002/app.v119.6
[18] LIANG B, SHU Y, WAN P, et al. Genipin-enhanced nacre-inspired montmorillonite-chitosan film with superior mechanical and UV blocking properties[J]. Composites Science and Technology, 2019.DOI: 10.1016/j.compscitech.2019.107747.
[19] 徐爱玲, 王春梅. 植酸的铵化及其对Lyocell织物的阻燃整理[J]. 纺织学报 2020, 41(2): 83-88.
XU Ailing, WANG Chunmei. Ammonium modification of phytic acid and flame retardant finishing of Lyocell fabic[J]. Journal of Textile Research, 2020, 41(2): 83-88.
[20] KUNDU Chanchal K, WANG Xin, SONG Lei, et al. Borate cross-linked layer-by-layer assembly of green polyelectrolytes on polyamide 66 fabrics for flame-retardant treatment[J]. Progress in Organic Coatings, 2018, 121: 173-181.
doi: 10.1016/j.porgcoat.2018.04.031
[1] 徐瑞东, 王航, 曲丽君, 田明伟. 聚乳酸非织造基材触摸传感电子织物制备及其性能[J]. 纺织学报, 2023, 44(09): 161-167.
[2] 邵彦峥, 孙将皓, 魏春艳, 吕丽华. 棉秆皮微晶纤维素/改性壳聚糖吸附纤维制备与性能[J]. 纺织学报, 2023, 44(08): 18-25.
[3] 蒋逸飞, 田焰宽, 戴俊, 王学利, 李发学, 俞建勇, 高婷婷. 太阳能驱动多级海水淡化器件的设计及其集水率探究[J]. 纺织学报, 2023, 44(08): 9-17.
[4] 赵明顺, 陈枭雄, 于金超, 潘志娟. 光致变色聚乳酸纤维的纺制及其微观结构与性能[J]. 纺织学报, 2023, 44(07): 10-17.
[5] 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167.
[6] 杨海富, 罗丽娟, 师建军, 马晓光, 郑振荣. 阻燃防水多功能涤纶篷布的制备及其性能[J]. 纺织学报, 2023, 44(06): 168-174.
[7] 狄友波, 陈燮阳, 阎智锋, 殷轩, 邱纯利, 马伟良, 张向兵. 壳聚糖-聚乙烯醇协同对籽用大麻浆粕铁离子的脱除[J]. 纺织学报, 2023, 44(06): 175-182.
[8] 谭启飞, 陈梦莹, 马晟晟, 孙明祥, 代春鹏, 罗仑亭, 陈益人. 湖羊毛非织造阻燃吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(05): 147-154.
[9] 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76.
[10] 胡蝶飞, 王琰, 姚菊明, 祝国成. 纳米纤维复合结构空气过滤材料性能研究[J]. 纺织学报, 2023, 44(05): 77-83.
[11] 王洪杰, 姚岚, 王赫, 张仲. 医用口罩熔喷非织造布电极的制备及其电化学性能[J]. 纺织学报, 2022, 43(12): 22-28.
[12] 金关秀, 祝成炎. 基于图像模拟和支持向量机的复合非织造布孔隙尺寸预测[J]. 纺织学报, 2022, 43(12): 75-81.
[13] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[14] 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47.
[15] 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!