纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 134-142.doi: 10.13475/j.fzxb.20220707701

• 服装工程 • 上一篇    下一篇

基于服装结构特征识别的相似样板匹配技术

刘蓉, 谢红()   

  1. 上海工程技术大学 纺织服装学院, 上海 201620
  • 收稿日期:2022-07-21 修回日期:2023-06-09 出版日期:2023-10-15 发布日期:2023-12-07
  • 通讯作者: 谢红(1970—),女,教授,博士。主要研究方向为服装舒适性与功能。E-mail:xiehong99618@163.com
  • 作者简介:刘蓉(1993—),女,硕士生。主要研究方向为数字化服装设计与制造。
  • 基金资助:
    上海市科学技术委员会科技创新行动计划资助项目(18030501400)

Similarity pattern matching technology based on garment structural feature recognition

LIU Rong, XIE Hong()   

  1. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2022-07-21 Revised:2023-06-09 Published:2023-10-15 Online:2023-12-07

摘要:

为提高服装制版效率,实现从服装款式图到样板的智能检索,提出一种基于服装结构特征识别的相似样板匹配技术。该技术将服装结构制版知识与深度学习算法结合,基于对女裤中的廓形、褶裥、腰头类型等18个细粒度特征的识别来匹配样板。其中,技术的实现主要包括分类标签设计和模型验证实验。对于分类标签设计:先根据女裤结构制图知识,对平面款式图中可作为样板相似性评价指标的服装结构特征进行定义,并根据定义设置多标签类别;然后将多标签分类转化为单标签多分类,建立平面款式图、结构特征和样板三者之间的联系;最后通过数据可视化等方法对标签之间的相关性进行研究,并设计了最终的18个分类标签。对于模型验证实验:首先建立以女裤平面款式图为样本的服装数据集,基于数据集的特点对经典AlexNet网络进行改进,其中包括简化网络结构、减少模型参数、防止过拟合,在每层卷积层后增加批归一化操作,以加快模型的收敛速度,提高模型的泛化能力。模型测试结果表明:改进后的模型在验证集上的准确率为83.4%,相比改进前的AlexNet模型其准确率提高了6.7%;与其它结构更复杂的网络模型相比,该模型的准确率更高,综合性能更好,可用于款式图的结构特征识别及相似样板匹配。

关键词: 服装结构特征, 样板匹配, 多标签分类, 服装数据集, AlexNet网络, 服装制版

Abstract:

Objective From the perspective of intelligent pattern making, the closest pattern in the pattern library is matched by the identification of the garment style drawings and new patterns can be developed based on that pattern. This method of pattern making makes maximum use of existing pattern information and simplifies the structure drawing process of the pattern. In order to achieve similarity matching from garment style drawings to patterns, a pattern matching technique based on garment structural feature recognition is proposed.

Method The implementation of this technique consists of two main parts. The first is category label design, where certain structural features in the flat style drawing are defined and multi-label categories are set according to the definition according to the knowledge of women's trouser structural drawing. Then the multi-label categories were transformed into single-label multi-categories, and the link between the flat style diagram, structural features and the pattern was established. Finally, examining the correlation between the labels, the final labels for the experiment were designed. The second part is the model validation. In this part of work, the apparel dataset was established, which took the women's trousers flat style drawing as the sample. Then the AlexNet network was improved in the experiment. These changes mainly include simplifying the network structure and adding batch normalization operations after each convolutional layer.

Results In the process of label design, 18 categories of women's trousers were set through data visualization analysis and the study of correlations between labels. One of the results of the model testing shows the model converges faster after adding the batch normalization after the convolution layer (Fig. 10 and Tab. 4). The recognition accuracy is higher, with the highest recognition accuracy achieved by adding four layers of batch normalization. Second, it can be seen that the final training accuracy of the model tends to be stable around 99% (Fig. 8). The accuracy of the improved model on the validation set is 83.4%, and the recall and F1 values are 0.834 and 0.835, respectively. Third, the accuracy of the improved model is 6.7% higher than that of the original AlexNet model and 6% and 3.6% higher than that of the ResNet18 and VGG11 models, respectively (Fig. 11, Tab. 5). The number of model parameters is also less than that of the original model.

Conclusion In this paper, the identification of structural features and matching of similar patterns is achieved by defining 18 structural features in the silhouette, waist position, waist shape, waist process and hip circumference, and using them as similarity representations of the pattern, constructing a model using the garment style drawings as input. The experimental research has certain value and significance to the intelligent pattern making of garments. In the process of label design, through the visual analysis of data and the study of the correlation between labels, invalid labels can be eliminated and label categories can be set reasonably, which can improve the problem of uneven data distribution in label categories and improve the utilization rate of data; In the process of model validation, by improving the structure of the original AlexNet model and introducing batch normalization operation in the convolution layer, the convergence speed of the model can be speed up and the recognition accuracy of the model be increased.

Key words: garment structure characteristic, pattern matching, multi-label classification, garment dataset, AlexNet neural network, garment pattern making

中图分类号: 

  • TS941.2

图1

款式图与结构特征以及样板之间的关系图示"

图2

女裤结构特征分类流程图"

表1

女裤结构特征分类"

标签名 标签属性 类别 代号
廓形 全局 紧身裤、直筒裤、喇叭裤、
锥形裤、萝卜裤、阔腿裤
Kn
腰位 全局 高腰、中腰、低腰 Wm
腰部工艺 局部 拉链、松紧 Mp
腰部造型 局部 有省道、有褶裥、较多褶裥、无 Dq
臀围 全局 合体臀、较宽松臀、宽松臀 Hk

图3

其它结构标签在廓形标签中的分布"

表2

不同廓形特征的结构相似性计算"

代号 欧氏距离
K1 K2 K3 K4 K5 K6
K1 0 83.7 20.4 72.0 155.0 118.9
K2 83.9 0 70.8 36.2 98.8 58.8
K3 20.4 70.8 0 56.9 141.8 103.0
K4 72.0 36.2 56.9 0 114.1 64.2
K5 155.0 98.8 141.8 114.1 0 59.2
K6 118.9 58.8 103.0 64.2 59.2 0

图4

实验标签设计结果"

表3

改进后的模型参数"

网络层 卷积核
大小
步长 边界填
充值
输出图
像大小
参数
总量
Input 256×512×3
Conv-1 11×11 4 2 63×127×64 23 296
BatchNorm1 63×127×64 128
Maxpool1 3×3 2 0 31×63×64
Conv-2 5×5 1 2 31×63×192 307 392
BatchNorm2 31×63×192 384
Maxpool2 3×3 2 0 15×31×192
Conv-3 3×3 1 1 15×31×384 663 936
BatchNorm3 15×31×384 768
Maxpool3 3×3 2 0 7×15×384
Conv-4 3×3 1 1 7×15×256 884 992
BatchNorm4 7×15×256 512
Maxpool4 3×3 2 0 3×7×256
FC-1 输出概率Dropout rate 0.5
输出概率Dropout rate 0.5
1 024 5 506 048
FC-2 1 024 1 049 600
Softmax 18 18 450

图5

改进后的网络模型"

图6

女裤结构特征识别流程图"

图7

数据增强"

图8

改进模型训练验证精度曲线图"

图9

不同类别准确率"

图10

不同层数批归一化的损失函数图"

表4

不同BN操作后模型的准确率"

BN层数 方法 准确率/%
0 80.7
1 Covn-4 83.3
2 Covn-1、Covn-4 82.8
3 Covn-1、Covn-3、Covn-4 83.0
4 Covn-1、Covn-2、Covn-3、Covn-4 83.4

图11

不同模型不同类别准确率"

表5

不同模型的准确率"

模型 准确率/% 模型参数量/MB
ResNet18 77.4 42.7
VGG11 79.8 492
原AlexNet 76.7 217
本文模型 83.4 96.8

图12

易错类别分析"

[1] 刘丹. 女式衬衣款式图到结构图的智能转换研究[D]. 西安: 西安工程大学, 2015: 2-5.
LIU Dan. Study on the intelligent conversion of blouse technical drawing to structure drawing[D]. Xi'an: Xi'an Polytechnic University, 2015: 2-5.
[2] 周幸子. 连衣裙款式图的识别和样板的自动生成研究[D]. 上海: 东华大学, 2021: 5-9.
ZHOU Xingzi. Study of recognition of dress design sketch and automatic pattern generation[D]. Shanghai: Donghua University, 2021: 5-9.
[3] 李涛, 杜磊, 黄振华, 等. 服装款式图识别与样板转换技术研究进展[J]. 纺织学报, 2020, 41(8): 145-151.
LI Tao, DU Lei, HUANG Zhenhua, et al. Review on pattern conversion technology based on garment flat recognition[J]. Journal of Texitile Research, 2020, 41(8): 145-151.
[4] 徐增波, 张玲, 张艳红, 等. 基于复杂网络提取和支持向量机模型分类的服装领型研究[J]. 纺织学报, 2021, 42(6): 146-152.
XU Zengbo, ZHANG Ling, ZHANG Yanhong, et al. Research on clothing collar types based on complex network extraction and support vector machine classification[J]. Journal of Texitile Research, 2021, 42(6): 146-152.
[5] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
doi: 10.1109/5.726791
[6] 江慧, 马彪. 基于服装风格的款式相似度算法[J]. 纺织学报, 2021, 42(11): 129-136.
JIANG Hui, MA Biao. Style similarity algorithm based on clothing style[J]. Journal of Textile Research, 2021, 42(11): 129-136.
[7] MA J, ZHANG H, CHOW T W S. Multilabel classification with label-specific features and classifiers: a coarse and fine tuned framework[J]. IEEE Transactions on Cybernetics, 2021, 51(2): 1028-1042.
doi: 10.1109/TCYB.6221036
[8] 夏明, 宋婧, 姜朝阳, 等. 基于连衣裙结构特征匹配的款式识别技术[J]. 纺织学报, 2020, 41(7): 141-146.
XIA Ming, SONG Jing, JIANG Zhaoyang, et al. Style recognition technique based on feature matching in dress construction[J]. Journal of Texitile Research, 2020, 41(7): 141-146.
[9] 周慧颖, 汪廷华, 张代俐. 多标签特征选择研究进展[J]. 计算机工程与应用, 2022(6): 1-22.
ZHOU Huiying, WANG Tinghua, ZHANG Daili. Research progress of multi-label feature selection[J]. Computer Engineering and Applications, 2022(6): 1-22.
[10] SUN Z, LIU X, HU K, et al. An efficient multi-label SVM classification algorithm by combining approximate extreme points method and divide-and-conquer stra-tegy[J]. IEEE Access, 2020, 8: 170967-170975.
doi: 10.1109/Access.6287639
[11] 武红鑫, 韩萌, 陈志强, 等. 监督和半监督学习下的多标签分类综述[J]. 计算机科学, 2022, 49(8): 12-25.
doi: 10.11896/jsjkx.210700111
WU Hongxin, HAN Meng, CHEN Zhiqiang, et al. Survey of multi-label classification based on supervised and semi-supervised learning[J]. Computer Science, 2022, 49(8): 12-25.
doi: 10.11896/jsjkx.210700111
[12] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognit-ion[J]. Proceedings of the IEEE, 2014, 66(11): 1556-1568.
[13] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9.
[14] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proceedings of International Conference on Machine Learning. France:[s.n.], 2015: 1-20.
[15] 吴晨芳, 杨世锡, 黄海舟, 等. 一种基于改进的LeNet-5模型滚动轴承故障诊断方法研究[J]. 振动与冲击, 2021, 40(12): 55-61.
WU Chenfang, YANG Shixi, HUANG Haizhou, et al. An improved fault diagnosis method of rolling bearings based on LeNet-5[J]. Journal of Vibration and Shock, 2021, 40(12): 55-61.
[1] 任泽, 钟安华. 基于男性腰臀裆部NURBS曲面模型的内裤数字化制版[J]. 纺织学报, 2023, 44(08): 167-173.
[2] 周艳红, 江红霞, 陈玲. 基于AutoCAD参数化中式嫁衣样板的自动生成[J]. 纺织学报, 2022, 43(09): 175-181.
[3] 叶勤文, 张皋鹏. 基于AutoCAD参数化的个性化服装纸样生成[J]. 纺织学报, 2019, 40(04): 103-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!