纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 164-171.doi: 10.13475/j.fzxb.20220701401

• 机械与器材 • 上一篇    下一篇

基于线结构光的钢领内表面圆度测量方法

金守峰1,2(), 沈文军1,2, 肖福礼3, 李毅3   

  1. 1.西安工程大学 机电工程学院, 陕西 西安 710600
    2.西安工程大学 西安市现代智能纺织装备重点实验室, 陕西 西安 710600
    3.陕西省计量科学研究院, 陕西 西安 710100
  • 收稿日期:2022-07-05 修回日期:2023-04-09 出版日期:2023-10-15 发布日期:2023-12-07
  • 作者简介:金守峰(1979—),男,教授,博士。主要研究方向为机器视觉检测与机器人控制。E-mail:jinshoufeng@xpu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52105559);陕西省自然科学基础研究计划项目(2023-JC-YB-288)

Measurement method of steel ring roundness based on line structured light

JIN Shoufeng1,2(), SHEN Wenjun1,2, XIAO Fuli3, LI Yi3   

  1. 1. College of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710600,China
    2. Xi'an Key Laboratory of Modern Intelligent Textile Equipment, Xi'an Polytechnic University, Xi'an, Shaanxi 710600, China
    3. Shaanxi Institute of Metrology Science, Xi'an, Shaanxi 710100, China
  • Received:2022-07-05 Revised:2023-04-09 Published:2023-10-15 Online:2023-12-07

摘要:

针对钢领内表面圆度在人工接触式测量中存在主观干扰及自动化程度低等问题,提出一种基于线结构光的钢领内表面圆度测量方法。通过构建图像掩模提取钢领内表面线结构光条纹的感兴趣区域,采用基于主成分分析的改进Steger方法,通过计算条纹法线方向的二阶泰勒展开得到亚像素级条纹中心,提升算法效率。由线结构光条中心坐标相机内外参数、光平面方程及旋转轴方程重构钢领内表面三维点云数据,根据圆度评价方法建立基于点云数据的钢领内表面圆度的测量模型。实验结果表明,本文方法所测最大偏差为5.8 μm,与文献中投影法所测结果相比更加精确,重复性测量标准差为0.725,且算法运行时间小于40 ms。

关键词: 线结构光, 钢领, 圆度, 条纹, 点云数据

Abstract:

Objective Aiming at the background that the roundness of the inner surface of steel ring is still mainly measured manually, an automatic solution based on machine vision measurement is proposed. According to the characteristics of textile steel ring, a method of measuring the inner surface roundness of steel collar based on line structured light was proposed. The method proposed in this paper aims to solve the problems of subjective judgment interference, cumbersome operation and low degree of automation in traditional manual contact measurement.

Method Firstly, the camera calibration, optical plane calibration and rotation center calibration of the measurement system were completed by the calibration plate. The point cloud data of the inner surface of the steel collar was obtained based on the calibration coefficient and the extracted optical strip center coordinates. The roundness information of the inner surface of the steel ring was obtained by constructing a virtual plane.

Results Roifill function is used to fill the specified region of interest polygon in the image, and the pixel values on the polygon boundary are smoothly interpolated inwards to extract the line structure light fringe area, and then the maximum inter-class variance method is used for binary processing. The hole and edge burr of optical strip were solved by morphological closed operation(Fig. 6).The principal component analysis method matrix was used to solve the covariance matrix instead of Hession to obtain the normal direction of fringes. By calculating the second-order Taylor expansion of the normal direction of fringes, the sub-pixel fringe center was obtained, and the extraction time was increased from 0.018 4 s to 0.002 9 s, which greatly shortened the time of the traditional algorithm (Fig. 7).The three-dimensional point cloud data on the inner surface of the steel collar were reconstructed from the center of the linear structure light fringe and the internal and external parameters of the camera, the optical plane equation and the rotation axis equation (Fig. 8). Points on the same plane were screened out by means of zero distance between points and the plane on the virtual plane established on the vertical axis of rotation, and the circularity value was obtained by using the minimum region method. The point cloud data obtained in the experiments of three types of steel collar were calculated respectively (Fig. 10), and the measurement experiments were carried out with the traditional manual method and three-dimensional measuring instrument (Tab. 1) and repeatability measurement experiments (Tab. 2).

Conclusion Based on the principle of line structure, the parameter calibration is completed. The image mask method is combined with the maximum inter-class variance method, and the optical strip image is successfully obtained from the original image. The center of the optical strip is extracted by the improved Steger method based on principal component analysis, which improves the efficiency of the algorithm. Based on camera calibration parameters, optical plane calibration equation and rotation axis calibration equation, three-dimensional point cloud data on the inner surface of the steel collar were obtained from the fringe center of the line structure light. Combined with the roundness evaluation method, a measurement model of the inner surface roundness of the steel ring was established based on the point cloud data. Through the measurement experiment and repeatability measurement experiment of the three types of steel collar respectively, compared with the traditional manual method and three-dimensional measuring instrument, the maximum deviation measured by the method in this paper is 5.8 μm, which is more accurate than the results measured by the projection method in the literature, and the repeatability measurement standard deviation is 0.725, and the running time of the algorithm is less than 40 ms, which proves that the method has practical value for the roundness measurement of textile steel ring.

Key words: linear structured light, steel ring, roundness, stripe, point cloud data

中图分类号: 

  • TP391

图1

钢领结构及其示意图"

图2

线结构光测量原理"

图3

钢领内表面圆度测量系统"

图4

相机标定"

图5

旋转轴标定"

图6

感兴趣区域提取"

图7

光条中心提取结果"

图8

点云数据"

图9

3种型号的钢领"

图10

钢领内表面点云数据"

表1

不同型号钢领的圆度测量值"

型号 序号 圆度测量值 偏差
文献[3]方法 本文方法 OCG法 文献[3]方法 本文方法
1 43.5 45.5 46.3 -2.8 -0.8
2 27.5 32.3 29.6 -2.1 2.7
PG1-3854 3 32.5 35.2 33.2 -0.7 2.0
4 34.6 32.7 33.1 1.5 2.6
5 36.7 23.5 29.3 7.4 -5.8
1 34.9 35.5 36.3 -1.4 -0.8
2 30.4 31.2 29.5 0.9 1.7
PG1-4554 3 34.6 32.7 33.1 1.5 2.6
4 31.5 37.2 35.5 -4.0 1.7
5 35.0 33.8 34.2 0.8 -0.4
1 42.5 34.4 36.6 5.9 -2.2
2 32.7 34.1 32.4 -1.4 1.7
PG1-5160 3 35.5 33.8 31.3 4.2 2.5
4 26.4 29.7 33.5 -7.1 -3.8
5 43.3 48.5 44.0 -0.7 4.5

表2

钢领内表面圆度重复性偏差测量值"

序号 测量值 偏差
文献[3]方法 本文方法 文献[3]方法 本文方法
1 36.1 35.2 1.2 0.6
2 35.2 34.7 0.3 0.1
3 36.0 34.5 1.1 -0.1
4 32.4 33.4 -3.5 -1.2
5 35.8 35.5 0.9 0.9
[1] 王可平. 国产耐磨钢领钢丝圈的研发与应用[J]. 棉纺织技术, 2017, 45(1): 59-61.
WANG Keping. Development and application of domestic wear-resistant steel ring and wire ring[J]. Cotton Textile Technology, 2017, 45(1): 59-61.
[2] 甘佳佳, 李思平, 杨崇倡. 基于LabVIEW的钢领圆度自动化检测系统[J]. 毛纺科技, 2017, 45(5): 64-67.
GAN Jiajia, LI Siping, YANG Chongchang. Automatic detection system for the roundness of ring based on LabVIEW[J]. Wool Textile Journal, 2017, 45(5): 64-67.
[3] 金守峰, 焦航. 基于机器视觉的钢领内圈圆度检测方法[J]. 毛纺科技, 2022, 50(4): 83-88.
JIN Shoufeng, JIAO Hang. Detection method of roundness of steel collar inner ring based on machine vision[J]. Wool Textile Journal, 2022, 50(4): 83-88.
[4] 庞云龙, 刘佳, 王林. BCF-92 POF端面不圆度测量及应用[J]. 光通信技术, 2020, 44(7): 59-62.
PANG Yunlong, LIU Jia, YU Lin. Measurement and application of BCF-92 POF end face out of round-ness[J]. Optical Communication Technology, 2020, 44(7): 59-62.
[5] 金守峰, 范荻, 陈蓉, 等. 面向回转类零件圆度的机器0.10 mm视觉测量方法与试验[J]. 机械设计与研究, 2016, 32(4): 117-119,124.
JIN Shoufeng, FAN Di, CHEN Rong, et al. Method and experimental study of machine vision measurement for the roundness of rotary parts[J]. Machine Design & Research, 2016, 32(4): 117-119,124.
[6] KRANTIKUMAR K, KIRAN M B, SHANMUGANATHAN S S. Minimum zone tolerance algorithm to detect roundness error for machined rods using vision system[J]. Materials Today: Proceedings, 2021.DOI: 10.1016/j.matpr.2020.12.788.
[7] 刘杰, 李华, 付西红. 大尺寸筒状设备圆度误差测量系统[J]. 红外与激光工程, 2016, 45(1): 276-280.
LIU Jie, LI Hua, FU Xihong. Measurement system of large-scale sleeve roundness error[J]. Infrared and Laser Engineering, 2016, 45(1): 276-280.
[8] 陈厚瑞, 蔡潇雨, 魏佳斯, 等. 基于显微视觉的微球圆度测量方法研究[J]. 计量学报, 2019, 40(5): 770-775.
CHEN Hourui, CAI Xiaoyu, WEI Jiasi, et al. Research on measurement for roundness of microspheres based on micro-vision[J]. Acta Metrologica Sinica, 2019, 40(5): 770-775.
[9] 朱丹丹, 王洪喜, 王建华, 等. 基于图像处理的粗糙边缘盲孔圆度误差测量[J]. 工具技术, 2021, 55(4): 91-95.
ZHU Dandan, WANG Hongxi, WANG Jianhua, et al. Roundness error measurement for blind rough-edge hole based on image processing[J]. Tool Engineering, 2021, 55(4): 91-95.
[10] 林强强, 金守峰, 马秋瑞, 等. 面向机器人抓取的零散工件识别与测量方法[J]. 西安工程大学学报, 2019, 32(2): 192-197.
LIN Qiangqiang, JIN Shoufeng, MA Qiurui, et al. Fragmented workpiece identification and measurement method for robotic grabbing[J]. Journal of Xi'an Polytechnic University, 2019, 32(2): 192-197.
[11] 马金钰, 陈欣, 丁国清, 等. 基于激光位移传感器圆径测量的角度安装误差研究(英文)[J]. 红外与激光工程, 2021, 50(5): 194-200.
MA Jinyu, CHEN Xin, DING Guoqing. Research on angle setting error of diameter measurement based on laser displacement sensors(in English)[J]. Infrared and Laser Engineering, 2021, 50(5): 194-200.
[12] 韩宗旺, 张伟, 程祥, 等. 基于机器视觉的短轴零件圆度检测[J]. 组合机床与自动化加工技术, 2021(10): 93-96.
doi: 10.13462/j.cnki.mmtamt.2021.10.021
HAN Zongwang, ZHANG Wei, CHENG Xiang, et al. Roundness detection of short-axis parts based on machine vision[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(10): 93-96.
[13] 杨姝, 宋靖东, 罗佳, 等. 车轮踏面不圆度快速测量装置创新设计[J]. 机械设计, 2021, 38(3): 33-36.
YANG Shu, SONG Jingdong, LUO Jia, et al. Innovative design of the rapid measuring device for wheel tread out-of-roundness[J]. Journal of Machine Design, 2021, 38(3): 33-36.
[14] 陈至坤, 邸跃, 曾凯, 等. 基于线结构光的角钢截面几何参数三维测量[J]. 中国测试, 2019, 45(2): 128-133.
CHEN Zhikun, DI Yue, ZENG Kai, et al. 3D measurement of geometrical parameters of angle steel section based on line structured light[J]. China Measurement & Test, 2019, 45(2): 128-133.
[15] 翟鹏, 崔海华, 胡广露, 等. 面向线结构光测量的直线空间变换光平面标定方法[J]. 激光与光电子学进展, 2021, 58(2): 264-270.
ZHAI Peng, CUI Haihua, HU Guanglu, et al. Light plane calibration method using line transformation for line structured light measurement[J]. Laser & Optoelectronics Progress, 2021, 58(2): 264-270.
[16] 周晓东. 圆柱度误差的结构光视觉测量技术研究[D]. 长春: 吉林大学, 2017: 1-59.
ZHOU Xiaodong. Study of cylindricity error measurement technology based on structured light vision[D]. Changchun: Jilin University, 2017: 1-59.
[17] 李莹莹, 张志毅, 袁林. 线结构光光条中心提取综述[J]. 激光与光电子学进展, 2013, 50(10): 13-22.
LI Yingying, ZHANG Zhiyi, YUAN Lin. Survey on linear structured light stripe center extraction[J]. Laser & Optoelectronics Progress, 2013, 50(10): 13-22.
[18] 王绍阳, 李大华, 高强, 等. 改进骨刺去除算法的结构光条纹中心检测[J]. 激光杂志, 2018, 39(10): 39-43.
WANG Shaoyang, LI Dahua, GAO Qiang, et al. Detection of structured light strip center line based on improved skeletal removal algorithm[J]. Laser Journal, 2018, 39(10): 39-43.
[1] 郑培晓, 蒋高明, 丛洪莲, 李炳贤. 多色调线横条纹织物的设计与三维仿真[J]. 纺织学报, 2023, 44(06): 85-90.
[2] 顾冰菲, 闫彦红, 苏军强, 刘国联. 女西装特征部位松量分布规则[J]. 纺织学报, 2019, 40(05): 107-112.
[3] 高晓晓 江红霞. 应用3D打印技术的运动文胸模杯个性化定制[J]. 纺织学报, 2018, 39(11): 135-139.
[4] 温欣婷 徐伯俊 刘新金. BC9型钢丝圈气圈底端张力特性分析[J]. 纺织学报, 2016, 37(08): 119-124.
[5] 李思颖 徐伯俊 刘新金. 钢丝圈空间倾角分析[J]. 纺织学报, 2015, 36(08): 127-132.
[6] 李燕;黄凯. 基于Geomagic的三维人体建模技术[J]. 纺织学报, 2008, 29(5): 130-134.
[7] 李春广;王登化. GCr15钢领内跑道立方氮化硼砂轮磨削[J]. 纺织学报, 2007, 28(6): 109-111.
[8] 吴隆. 用磁性磨料对钢领进行光整加工的研究[J]. 纺织学报, 2004, 25(04): 77-78.
[9] 郭会清. 复合刷镀在钢领表面处理上的应用[J]. 纺织学报, 1998, 19(06): 50-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!