纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 181-187.doi: 10.13475/j.fzxb.20211005101

• 机械与器材 • 上一篇    下一篇

纬编针织机编织过程中三角振动响应特性

戴宁1,2, 梁汇江3, 胡旭东1(), 陆哲昊1, 徐开心1, 袁嫣红1, 屠佳佳1, 曾志发4   

  1. 1.浙江理工大学 浙江省现代纺织装备技术重点实验室, 浙江 杭州 310018
    2.浙江理工大学纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    3.浙江康立自控科技有限公司,浙江 绍兴 312500
    4.浙江恒强科技股份有限公司, 浙江 杭州 310018
  • 收稿日期:2022-10-22 修回日期:2023-06-30 出版日期:2023-10-15 发布日期:2023-12-07
  • 通讯作者: 胡旭东(1959—),男,教授,博士。主要研究方向为针织装备控制技术及智能制造。E-mail:xdhu@zstu.edu.cn
  • 作者简介:戴宁(1991—),男,博士。主要研究方向为针织装备控制技术及智能制造。
  • 基金资助:
    浙江省博士后科研择优资助项目(ZJ2021038);浙江理工大学科研启动基金项目(23242083-Y);浙江省科技计划资助项目(2022C01065);浙江省科技计划资助项目(2022C01202)

Vibration response characteristics of cam in knitting process of weft knitting machine

DAI Ning1,2, LIANG Huijiang3, HU Xudong1(), LU Zhehao1, XU Kaixin1, YUAN Yanhong1, TU Jiajia1, ZENG Zhifa4   

  1. 1. Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Zhejiang Kangli Automation Technology Co.,Ltd., Shaoxing, Zhejiang 312500, China
    4. Zhejiang Hengqiang Technology Co., Ltd., Hangzhou, Zhejiang 310018, China
  • Received:2022-10-22 Revised:2023-06-30 Published:2023-10-15 Online:2023-12-07

摘要:

纬编针织机编织过程中工作状态及故障的实时检测对提高其编织性能和稳定性具有重要意义,为解决单一品种执行器工作状态实时检测通用性差,无法保证纬编针织机终端控制环节准确等问题,结合纬编针织机编织过程中织针与三角的动作工艺,搭建其编织过程三角振动响应特性测试平台,得到在不同转速和不同针法下三角振动响应特性(振幅、频率)与转速、出针方式的数学关系。结果表明,测试平台可适用于各品种纬编设备,且可从设备的控制终端——织针的出针方式实现其编织过程中工作状态及故障的实时检测,对从振动层面提高纬编针织机稳定性具有一定借鉴意义。

关键词: 纬编针织机, 三角, 振动响应特性, 故障诊断

Abstract:

Objective The existing research primarily focuses on real-time detection of the working status of a single species of actuator, resulting in poor generality and inability to ensure the accuracy of the terminal control process in the weft knitting machine. This study investigates the forced motion characteristics between knitting needles and cam during the knitting process, providing theoretical and experimental evidence for the real-time detection of the working status and faults in the weft knitting equipment from a vibration perspective.

Method Combining the actual weaving process of the weft knitting machine, which involves the knitting needle impacting the cam and undergoing forced motion along the cam track, a testing platform was designed to investigate the vibration response characteristics of the cam during the weaving process. PZT (piezoelectric ceramic) was attached to the surface of the piezoelectric cam, creating a 'cam + PZT' coupling system. Vibration characteristic curves of the coupling system were obtained at different rotational speeds and knitting techniques.

Results The vibration characteristics (amplitude, frequency) under different rotational speeds and knitting techniques, as well as their mathematical relationship with the rotational speed and needle selection method, yield the following three results for fault diagnosis and online detection of weft knitting equipment from a vibration perspective. Firstly, the moment when the knitting needle strikes the cam, the vibration signal experiences a rapid increase in amplitude, reaching its maximum value within a short timeframe (approximately 200 microseconds). The amplitude then gradually diminishes to zero. Importantly, the decay time period remains consistent and can be considered negligible compared to the needle selection cycle. This finding holds true irrespective of the impact velocity(Fig. 3). When the weft knitting machine is in the fully selected needle state, the needle selection frequency is equal to the vibration frequency detected by the "cam + PZT" coupling system. Conversely, when employing an n1×n2knitting technique, the needle selection frequency becomes n1+n2 times the vibration frequency detected by the "cam + PZT" coupling system. These results highlight the relationship between needle selection and the vibration response of the knitting apparatus(Fig. 4-8). The maximum value of the vibration signal detected by the "cam + PZT" coupling system exhibits a linear increase in relation to the rotational speed of the cylinder for different knitting techniques. Notably, this behavior remains independent of the specific knitting technique utilized, emphasizing the importance of rotational speed as a contributing factor to the vibration characteristics (Fig. 9 and Fig. 10 ). These results provide essential insights into the vibration-based real-time detection of working status and faults in weft knitting equipment. They pave the way for developing efficient fault diagnosis and online monitoring systems for weft knitting machinery. The findings contribute to the advancement of the weft knitting industry by improving the accuracy and reliability of detecting and addressing operational issues in real-time.

Conclusion The vibration attenuation characteristics of the "cam + PZT" coupling system can be utilized to detect faults during the weaving process for impact frequencies below 5 kHz. This implies the potential for implementing fault detection mechanisms based on the vibration decay pattern of the coupling system. Understanding the relationship between needle selection frequency and vibration frequency across different knitting techniques allows for the diagnosis of jacquard weaving faults. The consistent patterns observed in needle selection and vibration frequencies provide insights into specific needle selection methods. Additionally, the correlation between the maximum value of the vibration signal and the vibration speed enables real-time monitoring of rotational speed in the weaving process. This offers a means to assess the timeliness and stability of rotational speed in weft knitting machines. In summary, these conclusions highlight the practical applications of the results, including fault detection, jacquard weaving fault diagnosis, and online monitoring of rotational speed in weft knitting machines through vibration analysis.

Key words: weft knitting machine, cam, vibration response characteristic, fault diagnosis

中图分类号: 

  • TS103.7

图1

编织过程织针沿三角受迫运动简图"

图2

“三角+PZT”耦合体结构示意图"

图3

不同转速下织针撞击“三角+PZT”耦合体瞬时振动电信号特性"

图4

平针针法时“三角+PZT”瞬时振动电信号特性"

图5

1×1针法时“三角+PZT”瞬时振动电信号特性"

图6

1×2针法时“三角+PZT”瞬时振动电信号特性"

图7

1×3针法时“三角+PZT”瞬时振动电信号特性"

图8

2×2针法时“三角+PZT”瞬时振动电信号特性特性"

图9

振幅-转速曲线"

图10

振幅拟合曲线"

[1] 戴宁, 胡旭东, 彭来湖, 等. 无缝内衣机密度电动机的控制技术[J]. 纺织学报, 2020, 41(6): 161-167.
DAI Ning, HU Xudong, PENG Laihu, et al. Control technology for density motor used in seamless underwear machines[J]. Journal of Textile Research, 2020, 41(6): 161-167.
[2] 覃善霖, 彭来湖, 戴宁, 等. 电磁式针织选针器自检测技术[J]. 针织工业, 2019(6): 21-24.
QIN Shanlin, PENG Laihu, DAI Ning, et al. Self-detection technology of electro-magnetic knitting needle selector[J]. Knitting Industries, 2019(6): 21-24.
[3] 袁嫣红, 马天宇, 项宏年. 电磁选针器实时检测系统[J]. 纺织学报, 2018, 39(3): 143-147.
YUAN Yanhong, MA Tianyu, XIANG Hongnian. Real-time detection system for electro-magnetic needle selector[J]. Journal of Textile Research, 2018, 39(3): 143-147.
[4] MA Jie, ZHA Xiaofeng, TAO Haibin, et al. Testing system of needle selectors for jacquard knitting mac-hines[J]. Applied Mechanics & Materials, 2013(397-400): 1174-1177.
[5] PENG L, QI Y, ZHONG Y, et al. Needle selector failure detection based on piezoelectric sensor and driver co-location characteristics[J]. Textile Research Journal, 2023, 93(5/6): 1371-1388.
doi: 10.1177/00405175221133572
[6] 李军, 朱方明, 周炯, 等. 应用频闪原理的选针器频率检测系统设计[J]. 纺织学报, 2017, 38(3): 138-142.
LI Jun, ZHU Fangming, ZHOU Jiong, et al. Design of needle selector frequency detection system based on stroboscopic principle[J]. Journal of Textile Research, 2017, 38(3): 138-142.
[7] 戴昱昊, 袁嫣红, 胡旭东, 等. 针织圆纬机纱线输送状态监测技术研究[J]. 针织工业, 2021(3): 1-5.
DAI Yuhao, YUAN Yanhong, HU Xudong, et al. Monitoring technology of yarn feeding status on knitting circular weft machine[J]. Knitting Industries, 2021(3): 1-5.
[8] HERAVI M E M, NAJAR S S, MOAVENIAN M, et al. Effect of knitted loop length on the fluctuation amplitude of yarn fed into a circular weft-knitting machine using a new opto-electro device[J]. Fibres & Textiles in Eastern Europe, 2014, 22, 4(106): 81-86.
[9] LI Zhu, WU Xiaoguang. Design of yarn tension system and jacquard knitting machine[C]// 2014 International Conference on Mechatronics, Control and Electronic Engineering (MCE-14). Shengyang: STM Association, 2014: 171-174.
[10] HOSSAIN K M M. Effect of machine speed on yarn input tension and 'on-machine' course length for a circular weft knitting machine with positive storage feeding[J]. International Journal of Mechanical and Production Engineering Research and Development, 2018(1): 339-352.
[11] 胡旭东, 黄肖华, 彭来湖. 内嵌驱动针织机械密度调节装置的研制[J]. 纺织学报, 2015, 36(7): 131-135,141.
HU Xudong, HUANG Xiaohua, PENG Laihu. Development of inner embeds driver forknitting mechanism's density adjustment device[J]. Journal of Textile Research, 2015, 36(7): 131-135,141.
doi: 10.1177/004051756603600205
[12] 曹斌. 无缝针织内衣机成圈机构原理与工艺的研究与分析[D]. 杭州: 浙江理工大学, 2011: 6-38.
CAO Bin. Research and analysis on the looping principle and technology of the seamless underwear knitting machine[D]. Hangzhou: Zhejiang Sci-Tech University, 2011: 6-38.
[13] 张华. 纬编针织机编织动力学分析及控制策略研究[D]. 杭州: 浙江理工大学, 2013: 60-76.
ZHANG Hua. Dynamic analysis of knitting process and its control strategy study of weft knitting machine[D]. Hangzhou: Zhejiang Sci-Tech University, 2013: 60-76.
[14] 沈伟平. 横机编织系统建模及动力学研究[D]. 杭州: 浙江理工大学, 2012: 40-48.
SHEN Weiping. Research on modeling and dynamics of knitting system of flat knitting machine[D]. Hangzhou: Zhejiang Sci-Tech University, 2012: 40-48.
[15] 唐恩凌, 李月, 王睿智, 等. 强冲击下PZT-5H压电陶瓷的动力响应及电输出特性研究[J]. 兵工学报, 2018, 39(5): 983-990.
doi: 10.3969/j.issn.1000-1093.2018.05.019
TANG Enling, LI Yue, WANG Ruizhi, et al. Research on dynamic response and electrical output characteristicsof PZT-5H piezoelectric ceramics under strong shock[J]. Acta Armamentarii, 2018, 39(5): 983-990.
doi: 10.3969/j.issn.1000-1093.2018.05.019
[1] 陈志昊, 包文杰, 李富才, 静波, 黄朝林, 孙建文. 基于快速自适应经验模态分解的高速经编机振动分析[J]. 纺织学报, 2023, 44(04): 204-211.
[2] 刘帅, 郭晨宇, 陈鹤文, 杨瑞华. 赛络菲尔包缠纱结构建模分析与性能优化[J]. 纺织学报, 2023, 44(04): 63-69.
[3] 彭来湖, 章钰娟, 吕永法, 戴宁, 李建强. 纬编针织纱线输送状态检测方法及其动态特性[J]. 纺织学报, 2022, 43(12): 167-172.
[4] 孙卫红, 黎雨, 梁曼, 邵铁锋, 高明辉. 基于椭圆重叠区域的蚕茧图像融合方法[J]. 纺织学报, 2022, 43(09): 82-88.
[5] 戴宁, 彭来湖, 胡旭东, 崔英, 钟垚森, 王越峰. 纬编针织机织针自由状态下固有频率测试方法[J]. 纺织学报, 2020, 41(11): 150-155.
[6] 刘春 谢春萍 苏旭中 刘新金. 假捻器在环锭细纱机上的应用效果及工艺优化[J]. 纺织学报, 2018, 39(07): 27-31.
[7] 陈晓春 张彦彬 彭虎 陈翔 褚乃清. 重叠纤类图像的凹点匹配和分割算法[J]. 纺织学报, 2017, 38(11): 143-149.
[8] 王薇 蒋高明 丛洪莲 高梓越 汤梦婷 于璐璐. 基于互联网的纬编针织物计算机辅助设计系统[J]. 纺织学报, 2017, 38(08): 150-155.
[9] 余豪 张建建 刘可帅 陈军 夏治刚. 导纱钩运动引起的纺纱三角区变化对成纱性能的影响[J]. 纺织学报, 2016, 37(10): 19-25.
[10] 于勤 王强 范雪荣. 二醋酸纤维素纤维纺丝溶液的挤出胀大行为[J]. 纺织学报, 2015, 36(04): 7-10.
[11] 刘娜 徐伯俊 刘新金. 基于ANSYS的加捻三角区内纤维变形数值模拟[J]. 纺织学报, 2014, 35(8): 104-0.
[12] 李晓志 李晓久. 基于部位划分的三维人体曲面模型的构建[J]. 纺织学报, 2013, 34(9): 145-0.
[13] 陶肖明 郭滢 冯杰 徐宾刚 华涛. 低扭矩环锭纺纱原理及其单纱的结构和性能[J]. 纺织学报, 2013, 34(6): 120-125.
[14] 刘新金 苏旭中. 环锭纺纱中加捻三角区内纤维受力分析[J]. 纺织学报, 2013, 34(12): 32-0.
[15] 陈益松 夏明. 光学三角测量法及其在人体测量中的应用[J]. 纺织学报, 2012, 33(12): 95-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!