纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 188-195.doi: 10.13475/j.fzxb.20220307801

• 机械与器材 • 上一篇    下一篇

大尺寸异形结构芯模编织策略及纱线轨迹预测

李麒阳, 季诚昌, 郗欣甫(), 孙以泽   

  1. 东华大学 机械工程学院, 上海 201620
  • 收稿日期:2022-03-21 修回日期:2023-06-16 出版日期:2023-10-15 发布日期:2023-12-07
  • 通讯作者: 郗欣甫(1988—),男,讲师,博士。主要研究方向为先进纺织装备设计与制造。E-mail:xinfu.chi@dhu.edu.cn
  • 作者简介:李麒阳(1997—),男,博士生。主要研究方向为三维编织系统建模与仿真。
  • 基金资助:
    国家发改委重大技术装备攻关项目(2021-1635-05);中央高校基本科研业务费专项资金、东华大学研究生创新基金资助项目(CUSF-DH-D-2023036);中国纺织工业联合会应用基础研究项目(J202202)

Braiding strategy and yarn trajectory prediction of large size special-shaped structure mandrel

LI Qiyang, JI Chengchang, CHI Xinfu(), SUN Yize   

  1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
  • Received:2022-03-21 Revised:2023-06-16 Published:2023-10-15 Online:2023-12-07

摘要:

针对大尺寸异形结构芯模在编织过程中牵引轨迹精度低、编织角误差大等问题,提出一种基于双机器人协同夹持芯模进行编织的轨迹求解方法,并预测纱线轨迹。首先求解第1台机器人轨迹保证任意一段离散芯模垂直通过编织平面,再利用几何约束求解第2台机器人轨迹,然后提出针对该机器人轨迹的纱线预测模型,预测任意时刻纱线落在芯模上的位置。实验结果表明:使用本文求解的机器人轨迹进行编织可使芯模等截面部分编织角与期望值的误差在±3°以内,弯曲变截面部分的误差在±7°以内;预测模型的结果与实际测量编织角的等截面部分误差在±3°以内,弯曲变截面部分的误差在±5°以内。

关键词: 复合材料, 大尺寸芯模, 环形编织, 编织角, 牵引轨迹, 纱线轨迹预测

Abstract:

Objective Due to the lightweight and damage tolerance of composite materials, more and more large-sized shaped structural parts in important fields such as aerospace are using composite materials instead of traditional metal materials. This paper presents a computational solution for a dual robot cooperative braiding process, as well as a model for predicting yarn trajectories for robot-tracted mandrel braiding, taking into account the robot trajectory and the geometric characteristics of complex mandrels. This method facilitates improved braiding accuracy, shortens the composite design cycle and provides a basis for mechanical analysis of the composite at a later stage.

Method The spatial geometry of the discrete mandrel and the braiding plane was the research focus, and the trajectory of the robot end was solved using a rotational and translational transformation to obtain position and attitude information. Based on the spatial relationship between the yarn and the mandrel during the braiding process, a yarn prediction was made for this robot trajectory, which was used todetermine whether the yarn has been deposited on the surface of the mandrel based on the geometric relationship between the yarn and the surface of the mandrel at different moments and to predict the fabric construction.

Results According to the calculation model established in this paper, the trajectory of the dual robots was obtained. The master robot trajectory ensured the mandrel to pass vertically through the braiding plane. In the bending part, the robot end-effector away from the braiding plane demonstrated a larger movement stroke, and the slave robot trajectory was constrained by the initial position relationship of the dual robot end-effectors, while the dual robot end-effectors were guaranteed to be relatively stationary when moving to any point. The experimental results showed that the error between the braiding angle of the equal section part of the mandrel and the expected value could be within ±3 degrees and that of the bending unequal section part could be within ±7 degrees by using the robot trajectory solved in this paper. The large error at the bend was due to the large curvature of the mandrel bend, the large difference between the surface area of the outer and inner surface of the mandrel led to a large variation of the inner and outer braiding angles when the number of yarns was equal. The results of the predicted model and the actual measured braiding angle in equal section part could be within ±3 degrees, while the errors of the bending unequal section part could be within ±5 degrees, the main cause of error in the prediction model is the large effect of yarn interactions on the prediction of the fabric due to the non-circular cross-section of the mandrel, where yarn interactions affected the deposition position of the braiding fall points. The trajectory calculation and yarn prediction model had some errors, but it still served as a guide for actual production and improved production accuracy (Fig. 6 and Fig. 8).

Conclusion The dual robot trajectory solving method proposed in this paper can solve the braiding problem of large size shaped structure mandrels, while the yarn trajectory prediction model can make accurate prediction of shaped structure mandrels, improve braiding efficiency and enhance the mechanical properties of composite materials under the same conditions. Due to the assumption that the mandrel is always braided perpendicular to the braiding plane and that yarn interactions are not taken into account in this paper, the prediction results are subject to some errors on complex mandrels. Therefore, optimization of the braiding position of the mandrel and the addition of yarn interactions to the prediction model are considered in subsequent studies.

Key words: composite material, large size mandrel, circular braiding, braiding angle, take-up trajectory, yarn trajectory prediction

中图分类号: 

  • TS101.1

图1

编织机与双机器人牵引系统"

图2

编织过程示意图"

图3

机器人轨迹计算流程图"

图4

芯模、纱线与导向环的几何关系"

图5

纱线轨迹预测过程"

图6

编织过程双机器人TCP变化过程"

图7

真实纱线结构与预测结构对比"

图8

不同位置织物期望值、实际值与预测值对比"

[1] ZHOU H, HU D, GU B, et al. Transverse impact performance and finite element analysis of three dimensional braided composite tubes with different braiding layers[J]. Composite Structures, 2017, 168: 345-359.
doi: 10.1016/j.compstruct.2017.02.025
[2] GONDRAN M, ABDIN Y, GENDREAU Y, et al. Automated braiding of non-axisymmetric structures using an iterative inverse solution with angle control[J]. Composites Part A: Applied Science and Manufacturing, 2021.DOI: 10.1016/j.compositesa.2021.106288.
[3] CHI X, LI Q, YAN H, et al. Robot trajectory optimization control of braiding for three-dimensional complex preforms[J]. Journal of Engineered Fibers and Fabrics, 2021.DOI: 10.1177/15589250211043.
[4] MARTINEC T, MLÝNEK J, PETRŮ M. Calculation of the robot trajectory for the optimum directional orientation of fibre placement in the manufacture of composite profile frames[J]. Robotics and Computer-Integrated Manufacturing, 2015, 35: 42-54.
doi: 10.1016/j.rcim.2015.02.004
[5] MENG Z, YAO L, SUN Y, et al. Prediction method for offset compensation on three-dimensional mandrel with spatial irregular shape[J]. Journal of Industrial Textiles, 2021, 50(8): 1205-1224.
doi: 10.1177/1528083719858766
[6] DU G W, POPPER P. Analysis of a circular braiding process for complex shapes[J]. Journal of The Textile Institute, 2008, 85(3): 316-337.
doi: 10.1080/00405009408631277
[7] SWERY E E, HANS T, BULTEZ M, et al. Complete simulation process chain for the manufacturing of braided composite parts[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 378-390.
doi: 10.1016/j.compositesa.2017.08.011
[8] MONNOT P, LÉVESQUE J, LABERGE LEBEL L. Automated braiding of a complex aircraft fuselage frame using a non-circular braiding model[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 48-63.
doi: 10.1016/j.compositesa.2017.07.011
[9] MICHAELI W, ROSENBAUM U, JEHRKE M. Processing strategy for braiding of complex-shaped parts based on a mathematical process description[J]. Composites Manufacturing, 1990, 1(4): 243-251.
doi: 10.1016/0956-7143(90)90047-Z
[10] 王晓明, 邹婷, 李超婧, 等. 基于编织点起始位置及牵拉速度变化的编织角预测模型[J]. 纺织学报, 2015, 36(9): 28-33.
WANG Xiaoming, ZOU Ting, LI Chaojing, et al. Predicting model for braiding angle based on initial braiding height and take-up speed[J] Journal of Textile Research, 2015, 36 (9): 28-33.
[11] NISHIMOTO H, OHTANI A, NAKAI A, et al. Prediction method for temporal change in fiber orientation on cylindrical braided preforms[J]. Textile Research Journal, 2010, 80(9): 814-821.
doi: 10.1177/0040517509352523
[1] 左祺, 吴华伟, 王春红, 杜娟娟. 纱线结构对苎麻短纤纱复合材料拉伸性能的影响[J]. 纺织学报, 2023, 44(10): 81-89.
[2] 钱晨, 黄博翔, 李永强, 万军民, 傅雅琴. 增强纤维用上浆剂的耐高温化改性研究进展[J]. 纺织学报, 2023, 44(09): 232-242.
[3] 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98.
[4] 汪泽幸, 周衡书, 杨敏, 谭冬宜. 不同循环加载路径下黄麻织物/聚乙烯复合材料的变形特性[J]. 纺织学报, 2023, 44(09): 99-107.
[5] 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56.
[6] 陈露, 吴孟锦, 贾立霞, 阎若思. 氧等离子体改性超高分子量聚乙烯纤维复合材料层间损伤声发射特征分析[J]. 纺织学报, 2023, 44(07): 116-125.
[7] 段成红, 吴港本, 罗翔鹏. 基于DIGIMAT的碳纤维增强环氧树脂编织复合材料的力学性能[J]. 纺织学报, 2023, 44(07): 126-131.
[8] 杨金, 李麒阳, 季霞, 孙以泽. 复合材料编织-缠绕-拉挤系统建模及其控制策略[J]. 纺织学报, 2023, 44(07): 199-206.
[9] 李皎, 陈利, 姚天磊, 陈小明. 类回转预制体针刺机器人系统设计[J]. 纺织学报, 2023, 44(07): 207-213.
[10] 吕钧炜, 罗龙波, 刘向阳. 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展[J]. 纺织学报, 2023, 44(06): 21-27.
[11] 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176.
[12] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[13] 刘东炎, 郑成燕, 王晓旭, 钱坤, 张典堂. 超高分子量聚乙烯织物/聚脲柔性复合材料的抗破片侵彻机制[J]. 纺织学报, 2023, 44(03): 79-87.
[14] 冯帅博, 强荣, 邵玉龙, 杨啸, 马茜, 陈博文, 陈熠, 高明洋, 陈彩虹. 丝瓜络衍生碳纤维基复合材料的电磁波吸收性能[J]. 纺织学报, 2023, 44(02): 69-75.
[15] 蔡洁, 王亮, 傅宏俊, 钟智丽. 玻璃纤维/碳纤维织物基复合材料的电磁屏蔽性能[J]. 纺织学报, 2023, 44(02): 111-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!