纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 196-204.doi: 10.13475/j.fzxb.20220502802
付征1, 穆齐锋1, 张青松1,2(), 张宇晨3, 李玉莹3, 蔡仲雨4
FU Zheng1, MU Qifeng1, ZHANG Qingsong1,2(), ZHANG Yuchen3, LI Yuying3, CAI Zhongyu4
摘要:
为实现胶体静电纺纤维的形貌调控和广泛应用,综述了胶体静电纺丝的概念、制备原理、形貌影响因素、后处理方法及其应用,并对胶体静电纺丝的未来发展进行展望。发现调节纺丝液的配比和静电纺丝参数可获得不同形貌(串珠状、纺锤体状、黑莓状等)的复合纤维膜,对复合纤维膜进行不同的后处理(煅烧、浸泡、负载、交联)可赋予纤维新的功能,其处理后可应用于超疏水、吸附、催化、传感、组织工程、光子晶体纤维等领域。未来可通过多元胶体静电纺丝或提高颗粒间的相互作用,制备具有高韧性、优异力学性能和特定功能的复合纤维膜,并与3D打印相结合进一步拓展其应用范围和研究领域。
中图分类号:
[1] |
MIGUEL SÓnia P, FIGUEIRA Daniela R, SIMÕES Déborah, et al. Electrospun polymeric nanofibres as wound dressings: a review[J]. Colloids and Surfaces B: Biointerfaces, 2018, 169: 60-71.
doi: 10.1016/j.colsurfb.2018.05.011 |
[2] |
LIU Yang, MA Hongyang, HSIAO Benjamin S, et al. Improvement of meltdown temperature of lithium-ion battery separator using electrospun polyethersulfone membranes[J]. Polymer, 2016, 107: 163-169.
doi: 10.1016/j.polymer.2016.11.020 |
[3] | ZHAO Luying, DUAN Gaigai, ZHANG Guoying, et al. Electrospun functional materials toward food packaging applications: a review[J]. Nanomaterials, 2020. DOI: 10.3390/nano10010150. |
[4] |
CHENG Huiling, YANG Xiaoye, CHE Xin, et al. Biomedical application and controlled drug release of electrospun fibrous materials[J]. Materials Science and Engineering: C, 2018, 90: 750-763.
doi: 10.1016/j.msec.2018.05.007 |
[5] | KHALILY Mohammad Aref, YURDERI Mehmet, HAIDER Ali, et al. Atomic layer deposition of ruthenium nanoparticles on electrospun carbon nanofibers: a highly efficient nanocatalyst for the hydrolytic dehydrogenation of methylamine borane[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26162-26169. |
[6] | LI Xiaoqiang, CHEN Shi, HUA Qiu, et al. Fabrication of fluorescent poly (L-lactide-co-caprolactone) fibers with quantum-dot incorporation from emulsion electrospinning for chloramphenicol detection[J]. Journal of Applied Polymer Science, 2017, 134(11): 1-7. |
[7] |
FUENMAYOR Carlos Alberto, LEMMA Solomon Mengistu, MANNINO Saverio, et al. Filtration of apple juice by nylon nanofibrous membranes[J]. Journal of Food Engineering, 2014, 122: 110-116.
doi: 10.1016/j.jfoodeng.2013.08.038 |
[8] |
CRESPY Daniel, FRIEDEMANN Kathrin, POPA Ana-Maria. Colloid-electrospinning: fabrication of multicompartment nanofibers by the electrospinning of organic or/and inorganic dispersions and emulsions[J]. Macromolecular Rapid Communications, 2012, 33(23): 1978-1995.
doi: 10.1002/marc.201200549 pmid: 23129202 |
[9] |
AGARWAL Seema, GREINER Andreas. On the way to clean and safe electrospinning-green electrospinning: emulsion and suspension electrospinning[J]. Polymers for Advanced Technologies, 2011, 22(3): 372-378.
doi: 10.1002/pat.v22.3 |
[10] |
JIANG Shuai, LV Liping, LANDFESTER Katharina, et al. Nanocontainers in and onto nanofibers[J]. Accounts of Chemical Research, 2016, 49(5): 816-823.
doi: 10.1021/acs.accounts.5b00524 pmid: 27135135 |
[11] |
ZHANG Chuanling, YU Shuhong. Nanoparticles meet electrospinning: recent advances and future pros-pects[J]. Chemical Society Reviews, 2014, 43(13): 4423-4448.
doi: 10.1039/c3cs60426h pmid: 24695773 |
[12] |
LIM Jong-Min, MOON Jun Hyuk, YI Gi-Ra, et al. Fabrication of one-dimensional colloidal assemblies from electrospun nanofibers[J]. Langmuir, 2006, 22(8): 3445-3449.
doi: 10.1021/la053057d pmid: 16584206 |
[13] |
STOILJKOVIC Aleksandar, ISHAQUE Michael, JUSTUS Uwe, et al. Preparation of water-stable submicron fibers from aqueous latex dispersion of water-insoluble polymers by electrospinning[J]. Polymer, 2007, 48(14): 3974-3981.
doi: 10.1016/j.polymer.2007.04.050 |
[14] |
WU Chaojie, YUAN Wei, AL-DEYAB Salem S, et al. Tuning porous silica nanofibers by colloid electrospinning for dye adsorption[J]. Applied Surface Science, 2014, 313: 389-395.
doi: 10.1016/j.apsusc.2014.06.002 |
[15] | WANG Min, LI Xiong, HUA Weikang, et al. Electrospun poly(acrylic acid)/silica hydrogel nanofibers scaffold for highly efficient adsorption of lanthanide ions and its photoluminescence perfor-mance[J]. ACS Applied Materials & Interfaces, 2016, 8(36): 23995-24007. |
[16] |
XIA Yan, ZHAO Hongran, LIU Sen, et al. The humidity-sensitive property of MCM-48 self-assembly fiber prepared via electrospinning[J]. RSC Advances, 2014, 4(6): 2807-2812.
doi: 10.1039/C3RA45339A |
[17] |
MERCATO Loretta Laureana Del, MOFFA Maria, RINALDI Rosaria, et al. Ratiometric organic fibers for localized and reversible ion sensing with micrometer-scale spatial resolution[J]. Small, 2015, 11(48): 6417-6424.
doi: 10.1002/smll.201502171 pmid: 26539625 |
[18] |
SAN Luis Alicia De, AGUIRREURRETA Ziortza, PARDO Leticia M, et al. PS/PMMA-CdSe/ZnS quantum dots hybrid nanofibers for VOCs sensors[J]. Israel Journal of Chemistry, 2018, 58(12): 1347-1355.
doi: 10.1002/ijch.v58.12 |
[19] | HORZUM Nesrin, MUNOZ-ESPI Rafael, GLASSER Gunnar, et al. Hierarchically structured metal oxide/silica nanofibers by colloid electrospinning[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 6338-6345. |
[20] | MIGENDA Julia, WERNER Sebastian, ELLINGHAUS Rüdiger, et al. Mesoporous poly(divinylbenzene) fibers based on crosslinked nanoparticles[J]. Macromolecular Chemistry and Physics, 2018, 219(5): 1-13. |
[21] |
LIM Jongmin, YI Gira, MOON Junhyuk, et al. Superhydrophobic films of electrospun fibers with multiple-scale surface morphology[J]. Langmuir, 2007, 23(15): 7981-7989.
pmid: 17569546 |
[22] | LI Xiong, YU Xufeng, CHENG Cheng, et al. Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes for membrane distillation[J]. ACS Applied Materials & Interfaces, 2015, 7(39): 21919-21930. |
[23] |
JIANG Shuai, LV Liping, LANDFESTER Katharina, et al. Dual-responsive multicompartment nanofibers for controlled release of payloads[J]. RSC Advances, 2016, 6(49): 43767-43770.
doi: 10.1039/C6RA05687C |
[24] |
JIANG Shuai, LV Liping, LI Qifeng, et al. Tailoring nanoarchitectonics to control the release profile of payloads[J]. Nanoscale, 2016, 8(22): 11511-11517.
doi: 10.1039/c6nr00917d pmid: 27198762 |
[25] |
KIM Sohee, PARK Sunggurl, KANG Sunwoong, et al. Nanofiber-based hydrocolloid from colloid electrospinning toward next generation wound dressing[J]. Macromolecular Materials and Engineering, 2016, 301(7): 818-826.
doi: 10.1002/mame.v301.7 |
[26] |
WU Yingke, LIN Weiwei, HAO Hongye, et al. Nanofibrous scaffold from electrospinning biodegradable waterborne polyurethane/poly(vinyl alcohol) for tissue engineering application[J]. Journal of Biomaterials Science-Polymer Edition, 2017, 28(7): 648-663.
doi: 10.1080/09205063.2017.1294041 |
[27] | YUAN Wei, ZHOU Ning, SHI Lei, et al. Structural coloration of colloidal fiber by photonic band gap and resonant mie scattering[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 14064-14071. |
[28] |
KIM Geon Hwee, AN Taechang, LIM Geunbae. Fabrication of optical switching patterns with structural colored microfibers[J]. Nanoscale Research Letters, 2018, 13(204): 1-6.
doi: 10.1186/s11671-017-2411-3 |
[29] |
YUAN Shujian, MENG Weihao, DU Aihua, et al. Direct-writing structure color patterns on the electrospun colloidal fibers toward wearable materials[J]. Chinese Journal of Polymer Science, 2019, 37(8): 729-736.
doi: 10.1007/s10118-019-2286-0 |
[30] |
JIN Yu, YANG Dayong, KANG Dongyang, et al. Fabrication of necklace-like structures via electrospinning[J]. Langmuir, 2010, 26(2): 1186-1190.
doi: 10.1021/la902313t pmid: 19689141 |
[31] |
STOILJKOVIC Aleksandar, VENKATESH Rajan, KLIMOV Evgueni, et al. Poly(styrene-co-n-butyl acrylate) nanofibers with excellent stability against water by electrospinning from aqueous colloidal disper-sions[J]. Macromolecules, 2009, 42(16): 6147-6151.
doi: 10.1021/ma900354u |
[32] |
YUAN Wei, ZHANG Keqin. Structural evolution of electrospun composite fibers from the blend of polyvinyl alcohol and polymer nanoparticles[J]. Langmuir, 2012, 28(43): 15418-15424.
doi: 10.1021/la303312q pmid: 23039272 |
[33] | CAO Ding, LI Xinhua, YANG Lixia, et al. Controllable fabrication of micro/nanostructures by electrospinning from polystyrene/poly(vinyl alcohol) emulsion dispersions[J]. Journal of Applied Polymer Science, 2018, 135(26): 1-7. |
[34] |
GIEBEL Elisabeth, GETZE Julia, ROCKER Thorsten, et al. The importance of crosslinking and glass transition temperature for the mechanical strength of nanofibers obtained by green electrospinning[J]. Macromolecular Materials and Engineering, 2013, 298(4): 439-446.
doi: 10.1002/mame.v298.4 |
[35] |
GONZALEZ Edurne, BARQUERO Aitor, MUNOZ-SANCHEZ BelÉn, et al. Green electrospinning of polymer latexes: a systematic study of the effect of latex properties on fiber morphology[J]. Nanomaterials, 2021, 11(3): 2-13.
doi: 10.3390/nano11010002 |
[36] |
MARQUES Susana C S, SOARES Paula I P, ECHEVERRIA Coro, et al. Confinement of thermoresponsive microgels into fibres via colloidal electrospinning: experimental and statistical analy-sis[J]. RSC Advances, 2016, 6(80): 76370-76380.
doi: 10.1039/C6RA12713D |
[37] |
MU Qifeng, ZHANG Qingsong, GAO Lu, et al. Structural evolution and formation mechanism of the soft colloidal arrays in the core of PAAm nanofibers by electrospun packing[J]. Langmuir, 2017, 33(39): 10291-10301.
doi: 10.1021/acs.langmuir.7b02275 pmid: 28876075 |
[38] |
DIAZ Juan Esteban, BARRERO Antonio, MARQUEZ Manuel, et al. Absorption properties of microgel-PVP composite nanofibers made by electrospinning[J]. Macromolecular Rapid Communications, 2010, 31(2): 183-189.
doi: 10.1002/marc.200900534 pmid: 21590890 |
[39] |
FARIA Jaime, ECHEVERRIA Coro, BORGES Joao P, et al. Towards the development of multifunctional hybrid fibrillary gels: production and optimization by colloidal electrospinning[J]. RSC Advances, 2017, 7(77): 48972-48979.
doi: 10.1039/C7RA07166C |
[40] |
KEHREN Dominic, LOPEZ Astrid Catalina Molano, PICH Andrij. Nanogel-modified polycaprolactone microfibres with controlled water uptake and degradability[J]. Polymer, 2014, 55(9): 2153-2162.
doi: 10.1016/j.polymer.2014.03.025 |
[41] |
KEHREN Dominic, PICH Andrij. Fabrication and characterisation of microgel/polymer composite microfibres[J]. Macromolecular Materials and Engineering, 2013, 298(12): 1282-1293.
doi: 10.1002/mame.v298.12 |
[42] |
WILKE Philipp, COGER Vincent, NACHEV Milen, et al. Biocompatible microgel-modified electrospun fibers for zinc ion release[J]. Polymer, 2015, 61: 163-173.
doi: 10.1016/j.polymer.2015.01.078 |
[43] |
STÖBER Werner, FINK Arthur, BOHN Ernst. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69.
doi: 10.1016/0021-9797(68)90272-5 |
[44] |
HAN Yandong, LU Ziyang, TENG Zhaogang, et al. Unraveling the growth mechanism of silica particles in the stober method: in situ seeded growth model[J]. Langmuir, 2017, 33(23): 5879-5890.
doi: 10.1021/acs.langmuir.7b01140 pmid: 28514596 |
[45] |
LI Shanshan, WAN Quan, QIN Zonghua, et al. Unraveling the mystery of Stöber silica's microporo-sity[J]. Langmuir, 2016, 32(36): 9180-9187.
doi: 10.1021/acs.langmuir.6b02472 pmid: 27548279 |
[46] |
STULAR Danaja, KRUSE Magnus, ZUPUNSKI Vera, et al. Smart stimuli-responsive polylactic acid-hydrogel fibers produced via electrospinning[J]. Fibers and Polymers, 2019, 20(9): 1857-1868.
doi: 10.1007/s12221-019-9157-8 |
[47] |
JIANG Shuai, HE Wei, LANDFESTER Katharina, et al. The structure of fibers produced by colloid-electrospinning depends on the aggregation state of particles in the electrospinning feed[J]. Polymer, 2017, 127: 101-105.
doi: 10.1016/j.polymer.2017.08.061 |
[48] |
SUN Jinyuan, BUBEL Kathrin, CHEN Fei, et al. Nanofibers by green electrospinning of aqueous suspensions of biodegradable block copolyesters for applications in medicine, pharmacy and agriculture[J]. Macromolecular Rapid Communications, 2010, 31(23): 2077-2083.
doi: 10.1002/marc.201000379 pmid: 21567634 |
[49] |
GONCALVES Adriana, ALMEIDA Filipe V, BORGES João Paulo, et al. Incorporation of dual-stimuli responsive microgels in nanofibrous membranes for cancer treatment by magnetic hyperthermia[J]. Gels, 2021, 7(1): 3-17.
doi: 10.3390/gels7010003 |
[50] |
JO Eunmin, LEE Seongwon, KIM Kyu Tae, et al. Core-sheath nanofibers containing colloidal arrays in the core for programmable multi-agent delivery[J]. Advanced Materials, 2009, 21(9): 968-972.
doi: 10.1002/adma.v21:9 |
[51] |
FRIEDEMANN Kathrin, TURSHATOV Andrey, LANDFESTER Katharina, et al. Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning[J]. Langmuir, 2011, 27(11): 7132-7139.
doi: 10.1021/la104817r pmid: 21561104 |
[52] |
HERRMANN Christine, TURSHATOV Andrey, CRESPY Daniel. Fabrication of polymer ellipsoids by the electrospinning of swollen nanoparticles[J]. ACS Macro Letters, 2012, 1(7): 907-909.
doi: 10.1021/mz300245b |
[53] |
FRIEDEMANN Kathrin, CORRALES Tomas, KAPPL Michael, et al. Facile and large-scale fabrication of anisometric particles from fibers synthesized by colloid-electrospinning[J]. Small, 2012, 8(1): 144-153.
doi: 10.1002/smll.201101247 pmid: 22081486 |
[54] |
WEN Xian, XIONG Jian, LEI Sailing, et al. Diameter refinement of electrospun nanofibers: from mechanism, strategies to applications[J]. Advanced Fiber Materials, 2022, 4 (2), 145-161.
doi: 10.1007/s42765-021-00113-8 |
[55] |
HOHMAN Moses M, SHIN Michael, RUTLEDGE Gregory, et al. Electrospinning and electrically forced jets: I: stability theory[J]. Physics of Fluids, 2001, 13(8): 2201-2220.
doi: 10.1063/1.1383791 |
[56] | GROβMANN Florian. Gilbert-taylor cones and multi-phase electrospinning[D]. Marburg: Philipps-Universität Marburg, 2009: 1-30. |
[57] |
AGARWAL Seema, ECKHARDT Bruno, GROSSMANN Florian, et al. Gradient nanowires and nanotubes[J]. Physica Status Solidi: B, 2010, 247(10): 2451-2457.
doi: 10.1002/pssb.v247:10 |
[58] | DING Bin, YU Jianyong. Electrospun nanofibers for energy and environmental applications[M]. Berlin: Springer, 2014: 2-50. |
[59] |
裴广晨, 王京霞, 江雷. 仿生光子晶体纤维的研究进展[J]. 化学学报, 2021, 79(4): 414-429.
doi: 10.6023/A20120556 |
PEI Guangchen, WANG Jingxia, JIANG Lei. Research progress of bioinspired photonic crystal fibers[J]. Acta Chimica Sinica, 2021, 79(4): 414-429.
doi: 10.6023/A20120556 |
|
[60] |
SIROHI Sidhharth, SINGH Dhirendra, NAIN Ratyakshi, et al. Electrospun composite nanofibres of PVA loaded with nanoencapsulated n-octadecane[J]. RSC Advances, 2015, 5(43): 34377-34382.
doi: 10.1039/C4RA16988C |
[1] | 谭林立, 秦柳, 李英儒, 邓伶俐, 谢知音, 李时东. 基于超临界二氧化碳的高效低阻聚丙烯熔喷纤维制备及其性能[J]. 纺织学报, 2023, 44(01): 87-92. |
[2] | 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100. |
[3] | 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93. |
[4] | 李兴兴, 李琴, 岳甜甜, 刘宇清. 微纳米纤维素材料的微流控制备技术研究进展[J]. 纺织学报, 2022, 43(04): 180-186. |
[5] | 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73. |
[6] | 朱斐超, 张宇静, 张强, 叶翔宇, 张恒, 汪伦合, 黄瑞杰, 刘国金, 于斌. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(01): 49-57. |
[7] | 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45. |
[8] | 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26-32. |
[9] | 周颖, 王闯, 朱佳颖, 黄林汐, 杨丽丽, 余厚咏, 姚菊明, 金万慧. 非织造布表面形貌可控氧化锌纳米粒子的构筑[J]. 纺织学报, 2019, 40(09): 35-41. |
[10] | 董锋 王航 滕士英 庄旭品 程博闻 . 梯度复合聚丙烯腈纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018, 39(09): 1-7. |
[11] | 辛三法 王新厚 胡守忠. 微纳米纤维的熔喷制作工艺[J]. 纺织学报, 2015, 36(07): 7-11. |
|