纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 142-150.doi: 10.13475/j.fzxb.20220804501
ZHENG Xianhong1,2,3, TANG Jinhao2, LI Changlong2(), WANG Wei1,3
摘要:
为优化导电织物对电磁波的阻抗匹配性,减少电磁波的二次污染,在棉织物中引入磁损耗材料中空Fe3O4纳米球,并通过层层组装的方法将其与过渡金属碳化物/氮化物(MXene)结合制备中空磁性Fe3O4纳米球/MXene复合棉织物,探究中空磁性Fe3O4纳米球对复合棉织物电磁屏蔽性能的影响规律和作用机制。借助超景深显微镜、扫描电子显微镜和矢量网络分析仪对中空磁性Fe3O4纳米球/MXene复合棉织物的形貌结构和电磁屏蔽性能进行表征与分析。结果表明:通过水热合成制备的Fe3O4具有中空球状形貌和尖晶石晶体结构,颗粒尺寸较为均匀,为(271.9 ± 4.6) nm;随着Fe3O4/MXene负载循环次数的增加,复合棉织物的方阻逐渐减小,最低为(10.5±1.7) Ω/□,并展现出较好的透气性;复合棉织物的电磁屏蔽性能也逐渐增强,最高电磁屏蔽效能可达(29.03±0.3)dB,且织物的屏蔽机制由吸收为主逐渐向反射为主转变,其优异的电磁屏蔽性能主要归因于MXene纳米片和中空磁性Fe3O4纳米球的协同作用。
中图分类号:
[1] | 邹梨花, 杨莉, 兰春桃, 等. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12):111-118. |
ZOU Lihua, YANG Li, LAN Chuntao, et al. Electromagnetic shielding properties of graphene oxide /polypyrrole coated cotton fabric with layer-by-layer assembling method[J]. Journal of Textile Research, 2021, 42(12):111-118. | |
[2] | 王秋萍, 张瑞萍, 李成红, 等. 导电涤纶非织造布的制备及其性能[J]. 纺织学报, 2020, 41(10):116-121. |
WANG Qiuping, ZHANG Ruiping, LI Chenghong, et al. Preparation and characterization of conductive polyester nonwovens[J]. Journal of Textile Research, 2020, 41(10):116-121. | |
[3] |
MAITY S, CHATTERJEE A. Conductive polymer-based electro-conductive textile composites for electromagnetic interference shielding: a review[J]. Journal of Industrial Textiles, 2018, 47(8): 2228-2252.
doi: 10.1177/1528083716670310 |
[4] | 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(8):107-112. |
YANG Honglin, XIANG Wei, DONG Shuxiu. Preparation and electromagnetic shielding properties of polyester fabric based nano-copper/reduced graphene oxide composites[J]. Journal of Textile Research, 2022, 43(8):107-112. | |
[5] | ZOU L H, LAN C T, YANG L, et al. The optimization of nanocomposite coating with polyaniline coated carbon nanotubes on fabrics for exceptional electromagnetic interference shielding[J]. Diamond and Related Materials, 2020. DOI: 10.1016/j.diamond.2020.107757. |
[6] | WANG X F, LEI Z W, MA X D, et al. A lightweight MXene-coated nonwoven fabric with excellent flame retardancy, EMI shielding, and electrothermal/photothermal conversion for wearable heater[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2021.132605. |
[7] |
ZHENG X H, SHEN J K, HU Q L, et al. Vapor phase polymerized conducting polymer/MXene textiles for wearable electronics[J]. Nanoscale, 2021, 13(3): 1832-1841.
doi: 10.1039/d0nr07433k pmid: 33434252 |
[8] | LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201905197. |
[9] |
LIU X Y, JIN X X, LI L, et al. Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion perform-ance[J]. Journal of Materials Chemistry A, 2020, 8(25): 12526-12537.
doi: 10.1039/D0TA03048A |
[10] | WANG Q W, ZHANG H B, LIU J, et al. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating perform-ances[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201806819. |
[11] |
SU L, MA J X, ZHANG F Z, et al. Achieving effective broadband microwave absorption with Fe3O4@C supraparticles[J]. Journal of Materiomics, 2021, 7(1): 80-88.
doi: 10.1016/j.jmat.2020.07.011 |
[12] |
DENG B W, LIU Z C, PAN F, et al. Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching[J]. Journal of Materials Chemistry A, 2021, 9(6): 3500-3510.
doi: 10.1039/D0TA10551A |
[13] |
SHI Y N, GAO X H, QIU J. Synthesis and strengthened microwave absorption properties of three-dimensional porous Fe3O4/graphene composite foam[J]. Ceramics International, 2019, 45(3): 3126-3132.
doi: 10.1016/j.ceramint.2018.10.212 |
[14] |
SHATERI Khalil-abad M, YAZDANSHENAS M E, NATEGHI M R. Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity[J]. Cellulose, 2009, 16(6): 1147-1157.
doi: 10.1007/s10570-009-9351-8 |
[15] |
WANG C X, REN Y, LV J C, et al. In situ synthesis of silver nanoparticles on the cotton fabrics modified by plasma induced vapor phase graft polymerization of acrylic acid for durable multifunction[J]. Applied Surface Science, 2017, 396: 1840-1848.
doi: 10.1016/j.apsusc.2016.11.173 |
[16] |
ZHENG X H, HU Q L, WANG Z Q, et al. Roll-to-roll layer-by-layer assembly bark-shaped carbon nanotube/Ti3C2Tx MXene textiles for wearable electronics[J]. Journal of Colloid and Interface Science, 2021, 602: 680-688.
doi: 10.1016/j.jcis.2021.06.043 |
[17] | RAAGULAN K, GHIM J S, BRAVEENTH R, et al. EMI shielding of the hydrophobic, flexible, lightweight carbonless nano-plate composites[J]. Nanomaterials, 2020. DOI: 10.3390/nano10102086. |
[18] |
FAN Z W, LIU R T, CHENG X J. Nonwoven composite endowed with electromagnetic shielding performance by graphene nanosheets adherence[J]. Journal of The Textile Institute, 2022, 113(7): 1411-1417.
doi: 10.1080/00405000.2021.1929707 |
[19] |
GHOSH S, GANGUULY S, DAS P, et al. Fabrication of reduced graphene oxide/silver nanoparticles decorated conductive cotton fabric for high performing electromagnetic interference shielding and antibacterial application[J]. Fibers and Polymers, 2019, 20(6): 1161-1171.
doi: 10.1007/s12221-019-1001-7 |
[20] | LAN C T, LI C L, HU J Y, et al. High-loading carbon nanotube/polymer nanocomposite fabric coatings obtained by capillarity-assisted "excess assembly" for electromagnetic interference shielding[J]. Advanced Materials Interfaces, 2018. DOI: 10.1002/admi.201800116. |
[21] | ZOU L H, SHEN J H, XU Z Z, et al. Electromagnetic wave absorbing properties of cotton fabric with carbon nanotubes coating[J]. Fibres & Textiles in Eastern Europe, 2020, 28(5): 82-90. |
[22] | XIE C L, WANG Y, YIN G, et al. Carbon nanotubes chemical bonding with cotton/spandex blended fabric via thiol-epoxy click chemistry for durable electromagnetic interference shielding[J]. Progress in Organic Coatings, 2021. DOI: 10.1016/j.porgcoat.2021.106473. |
[23] |
MUTHUKUMAR N, THILAGAVATHI G, KANNAIAN T. Polyaniline-coated nylon lycra fabrics for strain sensor and electromagnetic interference shielding applic-ations[J]. High Performance Polymers, 2015, 27(1): 105-111.
doi: 10.1177/0954008314540313 |
[24] | PAN T, ZHANG Y, WANG C H, et al. Mulberry-like polyaniline-based flexible composite fabrics with effective electromagnetic shielding capability[J]. Composites Science and Technology, 2020. DOI: 10.1016/j.compscitech.2020.107991. |
[25] |
JOSEPH N, VARGHESE J, SEBASTIAN M T. In situ polymerized polyaniline nanofiber-based functional cotton and nylon fabrics as millimeter-wave absorbers[J]. Polymer Journal, 2017, 49(4): 391-399.
doi: 10.1038/pj.2016.121 |
[26] |
CRESPO M, GONZALEZ M, ELIAS L, et al. Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range[J]. Physica Status Solidi-Rapid Research Letters, 2014, 8(8):698-704.
doi: 10.1002/pssr.201409151 |
[27] |
CHEN Z P, XU C, MA C Q, et al. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding[J]. Advanced Materials, 2013, 25(9):1296-1300.
doi: 10.1002/adma.v25.9 |
[1] | 蔡洁, 王亮, 傅宏俊, 钟智丽. 玻璃纤维/碳纤维织物基复合材料的电磁屏蔽性能[J]. 纺织学报, 2023, 44(02): 111-117. |
[2] | 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(08): 107-112. |
[3] | 邹梨花, 杨莉, 兰春桃, 阮芳涛, 徐珍珍. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118. |
[4] | 荣凯, 樊威, 王琪, 张聪, 于洋. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(09): 10-16. |
[5] | 孟灵灵, 魏取福, 严忠杰, 仲珍珍, 王小慧, 沈佳宇, 陈洪炜. 磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 143-148. |
[6] | 张恒宇, 张宪胜, 肖红, 施楣梧. 二维碳化物在柔性电磁吸波领域的研究进展[J]. 纺织学报, 2020, 41(03): 182-187. |
[7] | 邹梨花, 徐珍珍, 孙妍妍, 王太冉, 邱夷平. 氧化石墨烯/聚苯胺功能膜对棉织物电磁屏蔽性能的影响[J]. 纺织学报, 2019, 40(08): 109-116. |
[8] | 缪润伍, 金丽华, 魏祺煜, 韩潇, 洪剑寒. 多轴向导电芳纶增强复合材料及其电磁屏蔽性能[J]. 纺织学报, 2019, 40(02): 100-104. |
[9] | 王利君 毛鹏丽. 防电磁辐射聚吡咯/ 棉织物的制备及其性能[J]. 纺织学报, 2018, 39(09): 95-101. |
[10] | 高党鸽 李亚娟 吕斌 马建中. 纳米银制备及其在纺织品中的应用研究进展[J]. 纺织学报, 2018, 39(08): 171-178. |
[11] | 曲华洋 谢春萍 徐伯俊 刘新金. 全聚赛络纺双芯纱及其弹性电磁屏蔽针织物的制备[J]. 纺织学报, 2018, 39(06): 52-57. |
[12] | 梁然然 肖红 王妮. 双层及多层电磁屏蔽织物的屏蔽效能[J]. 纺织学报, 2017, 38(09): 51-58. |
[13] | 苏钦城 赵晓明 李卫斌 李建雄. 基于有限积分法的机织物电磁屏蔽效能仿真分析[J]. 纺织学报, 2016, 37(2): 155-160. |
[14] | 梁然然 肖红 王妮. 电磁屏蔽织物屏蔽效能理论计算的研究进展[J]. 纺织学报, 2016, 37(2): 161-169. |
[15] | 黄帅 张毅 周志华. 采用因子分析法的服用织物电磁屏蔽性能影响因素分析[J]. 纺织学报, 2016, 37(2): 149-154. |
|