纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 151-159.doi: 10.13475/j.fzxb.20220906301

• 染整与化学品 • 上一篇    下一篇

高温自交联抗熔滴阻燃涤纶织物的制备及其性能

肖云超1,2, 杨雅茹1(), 郭健鑫1, 王童谣1, 田强3   

  1. 1.嘉兴学院 材料与纺织工程学院, 浙江 嘉兴 314001
    2.嘉兴学院 纳米技术研究院, 浙江 嘉兴 314001
    3.淄博大洋阻燃制品有限公司, 山东 淄博 255300
  • 收稿日期:2022-09-26 修回日期:2023-08-06 出版日期:2023-11-15 发布日期:2023-12-25
  • 通讯作者: 杨雅茹(1991—),女,讲师,博士。主要研究方向为阻燃材料。E-mail:yyr0515@zjxu.edu.cn
  • 作者简介:肖云超(1990—),男,实验师,博士。主要研究方向为功能高分子材料和纺织材料。
  • 基金资助:
    浙江省自然科学基金项目(LQ21E030008);浙江省自然科学基金项目(LQ22C100002);浙江省大学生科技创新活动计划(新苗人才计划)项目(2022R417002)

Preparation and properties of high temperature self-crosslinked anti-dripping and flame-retardant polyester fabric

XIAO Yunchao1,2, YANG Yaru1(), GUO Jianxin1, WANG Tongyao1, TIAN Qiang3   

  1. 1. College of Materials and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
    2. Nanotechnology Research Institute, Jiaxing University, Jiaxing, Zhejiang 314001, China
    3. Zibo Dayang Flame Retardant Products Co., Ltd., Zibo, Shandong 255300, China
  • Received:2022-09-26 Revised:2023-08-06 Published:2023-11-15 Online:2023-12-25

摘要:

针对涤纶织物易燃、熔滴严重的问题,采用甲基膦酸(5-乙基-2-甲基-2-氧代-1,3,2-二氧磷杂环己-5-基)甲基甲基酯(EMD)和N-苯基马来酰亚胺(N-PMI)构建新型磷-氮协同阻燃体系,采用浸轧法对涤纶织物进行后整理,研究其阻燃性能和阻燃机制。结果表明:EMD和N-PMI存在协同阻燃作用,整理后涤纶织物的极限氧指数达到35.1%,燃烧过程中不再产生熔滴,热释放速率峰值和总热释放量比纯涤纶织物分别降低了48.6%和20.8%,且力学性能和透气性不受明显影响;整理后涤纶织物表现出典型的凝聚相阻燃机制,与纯涤纶织物相比,其燃烧生成炭层的致密性、连续性及热稳定性均显著提高,从而能起到良好的屏障作用,而其抗熔滴性提高的主要原因则是伴随着熔融发生的高温自交联。

关键词: 涤纶, 阻燃, 抗熔滴, 织物后整理, 磷-氮协同阻燃, 阻燃机制, 等离子体预处理

Abstract:

Objective Fire hazard has caused great losses to human life and property, and textile fire is one of the main causes of fire disaster. As the mostly used chemical fiber in the world, polyester fiber is widely used in clothing, home textiles, transportation and other fields. However, it is a flammable material, and its burning is accompanied with serious dripping of droplets, which is prone to cause secondary injuries and fire spread. Therefore, it is of great significance to modify the polyester fabrics for flame-retardant and anti-dripping performance.

Method Alkali washing and plasma treatment were employed to pretreat polyester(PET) fabric, which activated and etched the PET fiber, so as to improve the infiltration and adhesion of flame-retardant as well as the flame-retardant durability. After that, methyl phosphonic acid (5-ethyl-2-methyl-2-oxo-1,3,2-dioxo-5-yl) methyl methyl ester (EMD) and N-phenylmaleimide (N-PMI) were compounded to form a phosphorus-nitrogen synergistic system for the leaching treatment of polyester fabric. By combining the flame-retardant of EMD with the crosslinking and char formation promotion property of N-PMI, the flame-retardant and anti-dripping performance of polyester fabric could be simultaneously improved.

Results Scanning electronic microscopy(SEM) and Fourier transform infrared spectroscopy (FT-IR) results showed that the impurities on the surface of the polyester fabric were significantly reduced after alkali washing, and the grooves generated by plasma etching were obviously visible in the fiber surface (Fig. 1 and Fig. 2). After leaching and finishing, EMD and N-PMI were uniformly adhered to the surface of PET fiber. The limiting oxygen index (LOI) and vertical burning test results showed that the LOI value of PET-EMD (PET treated with EMD only) was significantly increased, but the droplet phenomenon was not improved (Tab. 2). The LOI value of PET-N-PMI (PET treated with N-PMI only) was not increased much, but the droplet dripping is obviously reduced. In contrast, the flame-retardant and anti-dripping performance of polyester fabric treated by both EMD and N-PMI (PET-E+N) were enhanced with different features. The LOI value of PET-E+N reached 35.1% (83.8% higher than that of pure polyester fabric), which was higher than that of PET-EMD and PET-N-PMI, indicating the synergistic flame-retardant performance of EMD and N-PMI. In addition, PET-E+N extinguished immediately after leaving the fire source, and no dripping occurred during the combustion process, reaching flame-retardant grade B1. The introduction of N-PMI can promote the char formation of PET, and the char residues of PET-N-PMI at high temperature were 1.2 times higher than that of pure PET (Fig. 3). Furthermore, cone calorimeter test suggested that the peak heat release rate and total heat release of PET-E+N were 48.6% and 20.8% lower than that of pure PET, respectively (Fig. 4 and Tab. 4). The results also demonstrated that EMD would provide flame suppression effect, and N-PMI could promote the char formation, therefore, PET-E+N displayed outstanding barrier effect. PET-E+N burned to form a dense, continuous and porous char layer (Fig. 5 and Fig. 6), playing a critical role in blocking and protecting during combustion and implying that PET-E+N exhibits a typical condensed phase flame-retardant mechanism. Moreover, PET-N-PMI and PET-E+N both displayed an apparent exothermic peak (around 265 ℃) after the melting peak(Fig. 7), indicating that the existence of N-PMI promoted the crosslinking of PET during melting and played a role of "high temperature self-crosslinking". This is believed the deep reason for anti-dripping effect induced by N-PMI.

Conclusion On the basis of alkali washing and plasma pretreatment, EMD and N-PMI were selected to construct a new phosphorus-nitrogen synergistic flame-retardant system with the characteristics of "intelligent self-crosslinking” and employed to improve the flame-retardant and anti-dripping performane of polyester fabrics. The flame-retardant mechanism was deeply studied. Results show that the constructed flame-retardant system could effectively improve the flame-retardant and anti-dripping performane of polyester fabrics. Meanwhile, the mechanical properties and air permeability of the fabric are not obviously affected. This study provides a theoretical basis for flame-retardant and anti-dripping modification of polyester fabric.

Key words: polyester, flame-retardant, anti-dripping, fabric finishing, phosphorus-nitrogen synergistic flame-retardant, flame-retardant mechanism, plasma pretreatment

中图分类号: 

  • TS195.59

表1

阻燃整理液配方"

样品名称 EMD质量浓度/
(g·L-1)
N-PMI质量浓度/
(g·L-1)
浴比
PET
PET-EMD 150 0 1∶30
PET-N-PMI 120 1∶30
PET-E+N-1 90 120 1∶30
PET-E+N-2 90 150 1∶30
PET-E+N-3 90 180 1∶30
PET-E+N-4 120 120 1∶30
PET-E+N-5 120 150 1∶30
PET-E+N-6 120 180 1∶30
PET-E+N-7 150 120 1∶30
PET-E+N-8 150 150 1∶30
PET-E+N-9 150 180 1∶30

表2

涤纶织物的阻燃和抗熔滴性能"

样品名称 LOI值/% 续燃时间/s 阴燃时间/s 熔滴数 损毁长度/mm 是否引燃脱脂棉 等级
PET 19.1 15 燃尽
PET-EMD 29.0 0.9 1.5 6 65 B1
PET-N-PMI 23.8 3.5 2.0 0 179 B2
PET-E+N-1 26.0 0.5 1.2 0 137 B1
PET-E+N-2 26.6 0.3 1.0 0 120 B1
PET-E+N-3 27.3 0.3 0.7 0 111 B1
PET-E+N-4 28.4 0.4 0.7 0 95 B1
PET-E+N-5 29.8 0.3 0.6 0 81 B1
PET-E+N-6 31.9 0 0.4 0 59 B1
PET-E+N-7 35.1 0 0.3 0 19 B1
PET-E+N-8 35.0 0.3 0.5 0 23 B1
PET-E+N-9 33.2 0 0 0 27 B1

图1

涤纶织物的SEM照片"

图2

涤纶织物的红外光谱图"

图3

绦纶织物的TG和DTG曲线"

表3

绦纶织物的TG和DTG数据"

样品名称 质量损失
平台
T-5%/
T-max/
800 ℃时的
残炭量/%
PET Ⅰ(235~325 ℃)
Ⅱ(325~485 ℃)
300.8 415.3 5.8
PET-EMD Ⅰ(175~325 ℃)
Ⅱ(325~485 ℃)
239.8 422.8 6.8
PET-N-PMI Ⅰ(100~215 ℃)
Ⅱ(235~325 ℃)
Ⅲ(325~485 ℃)
142.3 420.7 12.9
PET-E+N Ⅰ(100~215 ℃)
Ⅱ(215~325 ℃)
Ⅲ(325~485 ℃)
175.0 419.5 8.2

图4

绦纶织物的热释放速率和总热释放量曲线"

表4

锥形量热仪测试数据"

样品
名称
pk-HRR/
(kW·m-2)
THR/
(MJ·m-2)
MEHC/
(MJ·kg-1)
TML/
%
EB/
%
Ef /
%
Ec/
%
PET 439.07 10.78 23.17 95.2 - - -
PET-EMD 238.52 8.95 15.40 92.6 34.6 33.5 2.7
PET-N-PMI 304.96 11.06 22.11 91.8 32.2 4.6 3.6
PET-E+N 225.63 8.54 20.93 93.8 35.1 9.7 1.5

图5

炭层的SEM照片"

图6

炭层的TG和DTG曲线"

表5

炭层的TG和DTG数据"

炭层样品名称 质量损失
平台
T-5%/℃ T-max/℃ 800 ℃时的
残炭量/%
PET Ⅰ(336~451 ℃)
Ⅱ(451 ℃~)
335.7 411.1 57.8
PET-EMD Ⅰ(565 ℃~) 564.8 728.4 75.0
PET-N-PMI Ⅰ(527 ℃~) 527.3 694.3 84.8
PET-E+N Ⅰ(592 ℃~) 591.9 643.4 86.7

图7

涤纶织物的DSC曲线"

表6

整理前后涤纶织物性能对比"

样品
名称
面密
度/(g·
m-2)
经(纬)
向断裂
强力/N
经(纬)
向撕破
强力/N
透气率/
(mm·
s-1)
LOI值/
%
阻燃
等级
PET 61.0 756.5
(262.6)
19.8
(17.2)
147.3 19.1
PET-E+
N(洗涤前)
72.8 826.7
(381.7)
18.2
(15.4)
121.8 35.1 B1
PET-E+
N(洗涤后)
65.7 792.2
(301.3)
17.8
(15.2)
139.5 27.0 B2
[1] KUNDU C K, LI Z, SONG L, et al. An overview of fire retardant treatments for synthetic textiles: from traditional approaches to recent applications[J]. European Polymer Journal, 2020. DOI:10.1016/j.eurpolymj.2020.109911.
[2] BALBAS D Q, CIRRINCIONE C, CIMÒ M, et al. Evaluation of an eco-friendly flame retardant treatment applied to cellulosic textiles used for the conservation of historical tapestries[J]. Polymer Degradation and Stability, 2022.DOI:10.1016/j.polymdegradstab.2022.109907.
[3] 陈龙, 周哲, 张军, 等. 废旧棉与涤纶纺织品化学法循环再生利用的研究进展[J]. 纺织学报, 2022, 43(5): 43-48.
CHEN Long, ZHOU Zhe, ZHANG Jun, et al. Research progress in chemical recycling of waste cotton and polyester textiles[J]. Journal of Textile Research, 2022, 43(5): 43-48.
[4] TAO Y, LIU C, LI P, et al. A flame-retardant PET fabric coating: flammability, anti-dripping properties, and flame-retardant mechanism[J]. Progress In Organic Coatings, 2021. DOI:10.1016/j.porgcoat.2020.105971.
[5] 薛宝霞, 史依然, 张凤, 等. 无卤氧化铁改性涤纶阻燃织物的制备及其性能[J]. 纺织学报, 2022, 43(5): 130-135.
XUE Baoxia, SHI Yiran, ZHANG Feng, et al. Preparation flame retardant polyester fabric modified with halogen-free ferric oxide and its property[J]. Journal of Textile Research, 2022, 43(5): 130-135.
[6] ZHANG C, ZHANG C, HU J, et al. Flame-retardant and anti-dripping coating for PET fabric with hydroxyl-containing cyclic phosphoramide[J]. Polymer Degradation and Stability, 2021. DOI:10.1016/j.polymdegradstab.2021.109699.
[7] KIM T, HONG K, THI N V, et al. The effect of DBD plasma activation time on the dyeability of woven polyester fabric with disperse dye[J]. Polymers, 2021. DOI:10.3390/polym13091434.
[8] NI Y P, WU W S, CHEN L, et al. How hydrogen bond interactions affect the flame retardancy and anti-dripping performances of PET[J]. Macromolecular Materials and Engineering, 2019. DOI:10.1002/mame.201900661.
[9] SALMEIA K A, GOONEIE A, SIMONETTI P, et al. Comprehensive study on flame retardant polyesters from phosphorus additives[J]. Polymer Degradation and Stability, 2018, 155: 22-34.
doi: 10.1016/j.polymdegradstab.2018.07.006
[10] 黄益婷, 程献伟, 关晋平, 等. 磷/氮阻燃剂对涤纶/棉混纺织物的阻燃整理[J]. 纺织学报, 2022, 43(6): 94-99.
HUANG Yiting, CHENG Xianwei, GUAN Jinping, et al. Phosphorus/nitrogen-containing flame retardant for flame retardant finishing of polyester/cotton blended fabric[J]. Journal of Textile Research, 2022, 43(6): 94-99.
[11] DING F, ZHANG S, REN X, et al. Synthesis of phosphorus-containing flame retardant monomer and grafting of PET fabrics via electron beam irradiation[J]. AATCC Journal of Research, 2020, 7(4): 15-21.
[12] ZHAO H B, WANG Y Z. Design and synthesis of PET-based copolyesters with flame-retardant and antidripping performance[J]. Macromolecular Rapid Communications, 2017. DOI:10.1002/marc.201700451.
[13] WANG C, WU L, DAI Y, et al. Application of self-templated PHMA sub-microtubes in enhancing flame-retardance and anti-dripping of PET[J]. Polymer Degradation and Stability, 2018, 154: 239-247.
doi: 10.1016/j.polymdegradstab.2018.06.005
[14] WANG L S, WANG X L, YAN G L. Synthesis, characterization and flame retardance behaviour of poly(ethylene terephthalate) copolymer containing triaryl phosphine oxide[J]. Polymer Degradation and Stability, 2000, 69(1): 127-130.
doi: 10.1016/S0141-3910(00)00050-1
[15] CHEN L, ZHAO H, NI Y, et al. 3D printable robust shape memory PET copolyesters with fire safety via π-stacking and synergistic crosslinking[J]. Journal of Materials Chemistry A, 2019, 7: 17037-17045.
doi: 10.1039/C9TA04187G
[16] PIZARRO G, MARAMBIO O G, JERIA-ORELL M, et al. Nanocomposites based on self-assembly poly(hydroxypropyl methacrylate)-block-poly(N-phen-ylmaleimide) and Fe3O4-NPs thermal stability, morphological characterization and optical properties[J]. Chemical Physics Letters, 2018, 693: 183-187.
doi: 10.1016/j.cplett.2018.01.030
[17] DONG L P, DENG C, LI R, et al. Poly(piperazinyl phosphamide): a novel highly-efficient charring agent for an EVA/APP intumescent flame retardant system[J]. RSC Advances, 2016, 6(36): 30436-30444.
doi: 10.1039/C6RA00164E
[18] 翁诗甫. 傅里叶变换红外光谱分析[M]. 2版. 北京: 化学工业出版社, 2010: 291-292.
WENG Shifu. Fourier transform infrared spectro-scopy[M]. 2nd ed. Beijing: Chemical Industry Press, 2010: 291-292.
[19] WANG J, ZHAO X, YU Q, et al. Inverse modeling of thermal decomposition of flame-retardant PET fiber with model-free coupled with particle swarm optimization algorithm[J]. ACS Omega, 2021, 6(21): 13626-13636.
doi: 10.1021/acsomega.1c00599 pmid: 34250328
[20] 罗渝然. 化学键能数据手册[M]. 北京: 科学出版社, 2005:223-225.
LUO Yuran. Chemical bond energy data manual[M]. Beijing: Science Press, 2005:223-225.
[21] DONG X, CHEN L, DUAN R T, et al. Phenylmaleimide-containing PET-based copolyester: cross-linking from 2π+π cycloaddition toward flame retardance and anti-dripping[J]. Polymer Chemistry, 2016, 7(15): 2698-2708.
doi: 10.1039/C6PY00183A
[22] SONG W, HE Y, WU Y, et al. Characterization of burning behaviors and particulate matter emissions of crop straws based on a cone calorimeter[J]. Materials, 2021. DOI:10.3390/ma14123407.
[23] CHEN Y, WEI W, YONG Q, et al. Terminal group effects of phosphazene-triazine bi-group flame retardant additives in flame retardant polylactic acid compo-sites[J]. Polymer Degradation and Stability, 2017, 140: 166-175.
doi: 10.1016/j.polymdegradstab.2017.04.024
[24] 郭超, 辛菲, 钱立军, 等. 无卤阻燃热塑性聚酯的研究进展[J]. 中国塑料, 2017, 31(10): 12-19.
GUO Chao, XIN Fei, QIAN Lijun, et al. Research progress on halogen-free flame retardant thermoplastic polyester[J]. China Plastics, 2017, 31(10): 12-19.
[25] YONG Q, QIAN L, WANG X. Flame-retardant effect of a novel phosphaphenanthrene/triazine-trione bi-group compound on an epoxy thermoset and its pyrolysis behaviour[J]. RSC Advances, 2016, 6(61): 56018-56027.
doi: 10.1039/C6RA10752D
[26] DU Y Y, JIANG X G, LU G J, et al. TG-DSC and FTIR study on pyrolysis of irradiation cross-linked polyethylene[J]. Journal of Material Cycles and Waste Management, 2017, 19:1400-1404.
doi: 10.1007/s10163-016-0530-z
[1] 葛怀富, 吴伟, 王健, 徐红, 毛志平. 5-(二甲氨基)-2-甲基-5-氧戊酸甲酯在超临界二氧化碳流体染色中的应用[J]. 纺织学报, 2024, 45(01): 120-127.
[2] 范硕, 杨鹏, 曾锦豪, 宋潇迪, 龚昱丹, 肖遥. 抗熔滴型多元有机硅阻燃剂整理锦纶6织物的制备及其性能[J]. 纺织学报, 2024, 45(01): 152-160.
[3] 谷金峻, 魏春艳, 郭紫阳, 吕丽华, 白晋, 赵航慧妍. 棉秆皮微晶纤维素/改性氧化石墨烯阻燃纤维的制备及其性能[J]. 纺织学报, 2024, 45(01): 39-47.
[4] 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82.
[5] 魏建斐, 马国聪, 张安莹, 吴雨航, 崔晓晴, 王锐. 明胶基碳点的热解法制备及其阻燃与防伪应用[J]. 纺织学报, 2023, 44(12): 106-114.
[6] 陈顺, 钱坤, 梁付巍, 郭文文. 丁香酚基复合涂层阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(12): 115-122.
[7] 张文琪, 李莉莉, 胡泽旭, 魏丽菲, 相恒学, 朱美芳. 基于均三嗪环结构的聚己内酰胺6复合树脂制备及其抗熔滴阻燃特性[J]. 纺织学报, 2023, 44(11): 1-8.
[8] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[9] 钱耀威, 殷连博, 李家炜, 杨晓明, 李耀邦, 戚栋明. 聚乙烯基膦酸/多乙烯多胺层层自组装阻燃棉织物的制备及其性能[J]. 纺织学报, 2023, 44(09): 144-152.
[10] 聂文琪, 许帅, 高俊帅, 方斌, 孙江东. 聚(3-羟基丁酸-3-羟基戊酸酯)改性涤纶长丝的降解性能[J]. 纺织学报, 2023, 44(09): 35-42.
[11] 尚小愉, 朱坚, 王滢, 张先明, 陈文兴. 侧基含磷阻燃共聚酯的制备及其固相增黏反应[J]. 纺织学报, 2023, 44(07): 1-9.
[12] 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167.
[13] 杨海富, 罗丽娟, 师建军, 马晓光, 郑振荣. 阻燃防水多功能涤纶篷布的制备及其性能[J]. 纺织学报, 2023, 44(06): 168-174.
[14] 谭启飞, 陈梦莹, 马晟晟, 孙明祥, 代春鹏, 罗仑亭, 陈益人. 湖羊毛非织造阻燃吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(05): 147-154.
[15] 胡安钟, 王成成, 钟子恒, 张丽平, 付少海. 氮化硼纳米片掺杂型快速响应温致变色织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 164-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!