纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 160-166.doi: 10.13475/j.fzxb.20221003501

• 染整与化学品 • 上一篇    下一篇

紫外光/氨气双重响应超疏水棉织物的制备及其性能

王露砚, 张彩宁, 赵倩倩, 马志豪, 王煦漫()   

  1. 西安工程大学 材料工程学院, 陕西 西安 710048
  • 收稿日期:2022-10-17 修回日期:2023-08-06 出版日期:2023-11-15 发布日期:2023-12-25
  • 通讯作者: 王煦漫(1970—),男,副教授,博士。主要研究方向为表面功能材料。E-mail:wangxuman@163.com
  • 作者简介:王露砚(1998—),女,硕士生。主要研究方向为表面功能材料。
  • 基金资助:
    中国纺织工业联合会科技指导性项目(2020022)

Preparation and properties of superhydrophobic cotton fabrics with ultraviolet/ammonia dual responsiveness

WANG Luyan, ZHANG Caining, ZHAO Qianqian, MA Zhihao, WANG Xuman()   

  1. School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2022-10-17 Revised:2023-08-06 Published:2023-11-15 Online:2023-12-25

摘要:

为解决单一刺激响应性表面在复杂环境下的应用受限问题,以棉织物为基体,硬脂酸、壳聚糖和纳米氧化铁为原料,采用浸涂法制备出紫外光/氨气双重响应性超疏水棉织物。借助红外光谱仪、扫描电子显微镜和能量色散谱仪对超疏水棉织物的形貌和表面化学成分进行分析,并探究紫外光和氨气对超疏水棉织物润湿性能的影响。结果表明:制备的超疏水棉织物具有良好的超疏水性,其水接触角可达到153.94°;经过紫外光照射28 h后,棉织物从超疏水转变为超亲水性,并且在黑暗中放置28 d或120 ℃下加热40 min后,又可恢复超疏水性;紫外光与双氧水(H2O2)共同作用7 h,即可使超疏水棉织物转变为超亲水性;超疏水棉织物与氨气接触5 s,即可迅速转变为超亲水性,之后将其在80 ℃下加热50 min,又恢复至超疏水性。该棉织物具有良好的紫外光响应性和优良的氨气响应性。

关键词: 超疏水棉织物, 氧化铁, 紫外光, 氨气, 响应性, 润湿性转换

Abstract:

Objective Because of their wide range of applications, surfaces with switchable wettability between superhydrophilicity and superhydrophobicity brought about by external stimuli have attracted intensive research attention. However, almost all of these surfaces are responsive to only single external stimuli, which limits the applications of wettability switching surfaces. Compared with single stimuli surfaces, the surfaces with dual or multiple stimuli have better environmental adaptability. Therefore, superhydrophobic surfaces with dual or multiple stimuli responsiveness have become a research focus. This study is proposed to prepare superhydrophobic cotton fabrics with ultraviolet/ammonia dual responsiveness.

Method Ferrous sulfate and ethanedioic acid were used as the raw materials. FeC2O4 was prepared and then was calcined in a muffle furnace at 300 °C for 3 h before preparing ferric oxide particles. The ferric oxide particles, anhydrous ethanol, and stearic acid were added into a flask and stirred at ambient temperature for 0.5 h, and then mixed with the anhydrous ethanol suspension of chitosan before hydrophobic suspension was obtained. Cotton fabrics were dipped in the hydrophobic suspension and dispersed in an ultrasonic bath for 10 min, followed by drying in an oven at 60 °C to obtain the superhydrophobic cotton fabrics. Their morphologies and surface chemical compositions were analyzed by Fourier transform infrared spectroscopy (FT-IR), scanning electron micro-scopy (SEM) and energy dispersive spectroscopy (EDS). The influences of ultraviolet and ammonia on the wettability of superhydrophobic cotton fabrics were investigated, and the influence of temperature on the recovery of their superhydrophobicity was studied.

Results The X-ray diffraction (XRD) analysis revealed that the prepared ferric oxide was γ-Fe2O3 (Fig. 1). Water contact angle measure results showed that the prepared cotton fabric possessed good superhydrophobicity, and its water contact angle was 153.94° (Fig. 5). SEM analysis showed that γ-Fe2O3 particles and chitosan formed nanoscale and microscale rough structure on cotton fibers (Fig. 3). FT-IR and EDS analysis revealed that chitosan and stearic acid with low surface energy covered on the surface of cotton fibres (Fig. 2 and Fig. 3(b)). The superhydrophobicity of the cotton fabrics was obtained by combining micro-nano hierarchical rough structure and low surface energy material. After 28 h of ultraviolet irradiation, the as-prepared fabric changed from superhydrophobic to superhydrophilic (Fig. 6), and under the synergical effect of ultraviolet irradiation and H2O2 solution, the superhydrophobic cotton fabric converted to superhydrophilic within 7 h (Fig. 7). The above superhydrophilic fabric recovered to superhydrophobicity after standing in the dark for 28 d (Fig. 8). The superhydrophobicity recovery time decreased with the increasing of recovery temperature. In particular, the superhydrophilic surface converted to superhydrophobic when exposed to 120 ℃ for 40 min (Fig. 9). Meanwhile, the superhydrophobic cotton fabric changed from superhydrophobic to superhydrophilic when it was induced by ammonia for 5 s (Fig. 10). The above superhydrophilic fabric also recovered to superhydrophobic at ambient temperature (Fig. 11). The superhydrophobicity recovery time also decreased with increasing recovery temperature. For instance, the superhydrophilic fabric recovered to superhydrophobic when exposed to 80 ℃ for 50 min (Fig. 11).

Conclusion The prepared cotton fabrics possess good superhydrophobicity. Under ultraviolet irradiation and in ammonia atmosphere, the cotton fabrics could change from superhydrophobic to superhydrophilic, and the process is reversable. The superhydrophobicity recovery time is decreased with the increasing of recovery temperature. The proposed preparation method is simple and easy, and it can be easily extended to other surfaces. The fact that superhydrophobic surfaces have the capability to switch the wettability by ultraviolet or ammonia, and has potential applications in oil-water separation, microfluidic switching, drug delivery, and other similar applications.

Key words: superhydrophobic cotton fabric, ferric oxide, ultraviolet, ammonia, responsiveness, wettability conversion

中图分类号: 

  • TS190.8

图1

氧化铁的XRD曲线"

图2

未处理棉织物和超疏水棉织物的红外光谱图"

图3

未处理棉织物和超疏水棉织物的SEM照片"

图4

超疏水棉织物的EDS图"

图5

超疏水棉织物的水接触角照片"

图6

紫外光照时间对超疏水棉织物水接触角的影响"

图7

H2O2和紫外光照时间对超疏水棉织物水接触角的影响"

图8

黑暗处理时间对棉织物水接触角的影响"

图9

热处理对紫外光照射后棉织物水接触角的影响"

图10

氨气接触时间对超疏水棉织物水接触角的影响"

图11

热处理对氨气接触后棉织物水接触角的影响"

[1] BAI X, ZHAO Z, YANG H, et al. ZnO nanoparticles coated mesh with switchable wettability for on-demand ultrafast separation of emulsified oil/water mixtures[J]. Separation and Purification Technology, 2019, 221: 294-302.
doi: 10.1016/j.seppur.2019.04.003
[2] DANG Z, LIU L, LI Y, et al. In situ and ex situ pH-responsive coatings with switchable wettability for controllable oil/water separation[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 31281-31288.
[3] GULFAM M, CHUNG B G. Development of pH-responsive chitosan-coated mesoporous silica nanoparticles[J]. Macromolecular Research, 2014, 22(4): 412-417.
doi: 10.1007/s13233-014-2063-4
[4] POPAT A, LIU J, LU G, et al. A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles[J]. Journal of Materials Chemistry, 2012, 22(22): 11173-11178.
doi: 10.1039/c2jm30501a
[5] HOUDA E, WANG L, ERFURT D, et al. Water-resistant surfaces using zinc oxide structured nanorod arrays with switchable wetting property[J]. Surface and Coatings Technology, 2016, 299: 169-176.
doi: 10.1016/j.surfcoat.2016.04.056
[6] WANG D, JIAO P, WANG J, et al. Fast photo-switched wettability and color of surfaces coated with polymer brushes containing spiropyran[J]. Journal of Applied Polymer Science, 2012, 125(2): 870-875.
doi: 10.1002/app.v125.2
[7] CHEN H, PAN S, XIONG Y, et al. Preparation of thermo-responsive superhydrophobic TiO2/poly(N-isopropylacrylamide) microspheres[J]. Applied Surface Science, 2012, 258(24): 9505-9509.
doi: 10.1016/j.apsusc.2012.04.096
[8] CHEN W, HE H, ZHU H, et al. Thermo-responsive cellulose-based material with switchable wettability for controllable oil/water separation[J]. Polymers, 2018, 10(6): 592-607.
doi: 10.3390/polym10060592
[9] DU L, QUAN X, FAN X, et al. Electro-responsive carbon membranes with reversible superhydrophobicity/superhydrophilicity switch for efficient oil/water separation[J]. Separation and Purification Technology, 2019, 210: 891-899.
doi: 10.1016/j.seppur.2018.05.032
[10] LI Y, ZHU L, GRISHKEWICH N, et al. CO2-responsive cellulose nanofibers aerogels for switchable oil-water separation[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 9367-9373.
[11] LIU X, LIANG Y, ZHOU F, et al. Extreme wettability and tunable adhesion: biomimicking beyond nature?[J]. Soft Matte, 2012, 8(7): 2070-2086.
doi: 10.1039/C1SM07003G
[12] LIU W, HE Y, ZHANG Y, et al. A novel smart coating with ammonia-induced switchable superwettability for oily wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2020. DOI: 10.1016/j.jece.2020.104164.
[13] XIANG B, SUN Q, ZHONG Q, et al. Current research situation and future prospect of superwetting smart oil/water separation materials[J]. Journal of Materials Chemistry A, 2022, 10: 15861-15864.
doi: 10.1039/D2TA03081K
[14] HE H, SHI X, CHEN W, et al. Temperature/pH smart nanofibers with excellent biocompatibility and their dual interactions stimulus-responsive mechanism[J]. Journal of Agricultural and Food Chemistry, 2020, 68(28): 7425-7433.
doi: 10.1021/acs.jafc.0c01493 pmid: 32559369
[15] XIA F, FEHG L, WANG S, et al. Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity[J]. Advanced Materials, 2006, 18: 432-436.
doi: 10.1002/adma.v18:4
[16] WANG G, HAN G, WEN Y, et al. Photo- and pH-responsive electrospun polymer films: wettability and protein adsorption characteristics[J]. Chemistry Letters, 2015, 44(10): 1368-1370.
doi: 10.1246/cl.150606
[17] 薛宝霞, 史依然, 张凤, 等. 无卤氧化铁改性涤纶阻燃织物的制备及其性能[J]. 纺织学报, 2022, 43(5): 130-135.
XUE Baoxia, SHI Yiran, ZHANG Feng, et al. Preparation flame retardant polyester fabric modified with halogen-free ferric oxide and its property[J]. Journal of Textile Research, 2022, 43(5): 130-135.
[18] OLUSEGUN S J, GONZALO L, MAGDALENA O, et al. Photocatalytic degradation of antibiotics by superparamagnetic iron oxide nanoparticles: tetracycline case[J]. Catalysts, 2021. DOI:10.3390/catal11101243.
[19] SUN R, NAKAJIMA A, FUJISHIMA A, et al. Photoinduced surface wettability conversion of ZnO and TiO2 thin films[J]. Journal of Physical Chemistry B, 2001, 105(10): 1984-1990.
doi: 10.1021/jp002525j
[20] DOUMIC L I, SOARES P A, AYUDE M A, et al. Enhancement of a solar photo-Fenton reaction by using ferrioxalate complexes for the treatment of a synthetic cotton-textile dyeing wastewater[J]. Chemical Engineering Journal, 2015, 277: 86-96.
doi: 10.1016/j.cej.2015.04.074
[21] MA W, SAMAL S K, LIU Z, et al. Dual pH-and ammonia-vapor-responsive electrospun nanofibrous membranes for oil-water separations[J]. Journal of Membrane Science, 2017, 537: 128-139.
doi: 10.1016/j.memsci.2017.04.063
[1] 吴俊雄, 尉霞, 罗璟娴, 闫姣儒, 吴磊. 阻燃腈纶/芳纶包芯纱的制备及其紫外光稳定性[J]. 纺织学报, 2023, 44(03): 60-66.
[2] 杨梦凡, 王潮霞, 殷允杰, 邱华. 棉织物的螺吡喃微胶囊印花及其光致变色性能[J]. 纺织学报, 2022, 43(09): 137-142.
[3] 杨春利, 周伟贤, 梁京龙, 林桂圳, 刘杰, 倪延朋, 刘云, 商胜龙, 朱平. 磁场诱导结构生色海藻酸钙纤维的快速制备及其性能[J]. 纺织学报, 2022, 43(09): 64-69.
[4] 薛宝霞, 史依然, 张凤, 秦瑞红, 牛梅. 无卤氧化铁改性涤纶阻燃织物的制备及其性能[J]. 纺织学报, 2022, 43(05): 130-135.
[5] 戚栋明, 樊高晴, 虞一浩, 符晔, 张艳, 陈智杰. 蓖麻油基紫外光固化水性涂料墨水制备及其印花性能[J]. 纺织学报, 2022, 43(05): 26-31.
[6] 李庆, 陈灵辉, 李丹, 吴志强, 朱炜, 樊增禄. 金属-有机骨架光催化降解染料的研究进展[J]. 纺织学报, 2021, 42(12): 188-195.
[7] 谭艳君, 霍倩, 刘姝瑞. 纳米二氧化钛涂覆聚对苯撑苯并二噁唑纤维的制备及其抗紫外光照射性能[J]. 纺织学报, 2021, 42(07): 69-75.
[8] 郑森森, 郭涛, 董杰, 王士华, 张清华. 含咪唑结构高强高模聚酰亚胺纤维的制备及其结构与性能[J]. 纺织学报, 2021, 42(02): 7-11.
[9] 王访鹤, 王锐, 魏丽菲, 王照颖, 张安莹, 王德义. 层层自组装阻燃改性聚酯织物的制备及其性能[J]. 纺织学报, 2019, 40(11): 106-112.
[10] 张思, 吴敏. 紫外光固化密胺树脂的合成及涂层织物性能测试[J]. 纺织学报, 2019, 40(06): 64-67.
[11] 凡力华, 宋伟华, 王潮霞. 紫外光还原氧化石墨烯腈纶织物抗静电性能[J]. 纺织学报, 2019, 40(05): 97-101.
[12] 刘菲, 李秋瑾, 巩继贤, 李政, 刘秀明, 张健飞. 层层自组装多糖微胶囊的制备及其缓释型纯棉织物修饰应用[J]. 纺织学报, 2019, 40(02): 114-118.
[13] 李静 王晓 邵伟 崔永珠 魏春艳. 改性活性染料对涤纶织物的紫外光引发接枝染色[J]. 纺织学报, 2017, 38(11): 91-96.
[14] 蓝杰蕊 沈锦玉 李玖明 陈建勇 郭玉海 张华鹏 . 紫外光固化技术对聚丙烯非织造布的亲水改性[J]. 纺织学报, 2017, 38(05): 98-103.
[15] 周步光 张宇慧 王平 王强 范雪荣. 丝素/丙烯酰胺/丙烯酸吸水复合材料的紫外光辐照法制备[J]. 纺织学报, 2017, 38(05): 25-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!