纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 190-198.doi: 10.13475/j.fzxb.20220601201

• 机械与器材 • 上一篇    下一篇

棉精梳机分离罗拉混合驱动系统优化

刘金儒1,2, 李新荣1,2(), 王浩3, 师帅星1,2   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.天津市现代机电装备技术重点实验室, 天津 300387
    3.天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2022-06-06 修回日期:2023-07-03 出版日期:2023-11-15 发布日期:2023-12-25
  • 通讯作者: 李新荣(1975—),男,教授,博士。主要研究方向为新型纺织机械设计及自动化。E-mail:lixinrong7505@hotmail.com
  • 作者简介:刘金儒(1997—),男,硕士生。主要研究方向为新型纺织机械设计及自动化。
  • 基金资助:
    工信部产业技术基础公共服务平台项目(2021-0173-2-1);天津市131创新型人才团队项目(201916)

Optimization of detaching roller hybrid drive system for cotton comber

LIU Jinru1,2, LI Xinrong1,2(), WANG Hao3, SHI Shuaixing1,2   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387, China
    3. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2022-06-06 Revised:2023-07-03 Published:2023-11-15 Online:2023-12-25

摘要:

为更好地解决现有分离罗拉驱动方式传动链长及难以调整分离罗拉运动规律等缺点,首先,分析精梳机分离接合工艺,提出分离罗拉运动过程中的工艺关键点,并用分段拟合的方法进行拟合,得到理想的分离罗拉运动规律;其次,在对分离罗拉混合驱动方式中的齿轮传动系统进行动力学分析的基础上优化系统中各齿轮的齿数;然后,结合运动学分析及相关要求规划伺服电动机的运动规律,计算得到伺服电动机的速度曲线;最后,通过仿真软件及实验平台进行验证。结果表明,优化后的分离罗拉混合驱动系统可以使分离罗拉按照符合工艺要求的运动规律运行并使分离罗拉的运动具有柔性,解决了现有分离罗拉驱动方式机构传动链长及分离罗拉运动规律调整困难等问题。

关键词: 精梳机, 分离罗拉, 混合驱动, 齿轮传动系统, 动力学

Abstract:

Objective The detaching roller is the core mechanism of the comber. In the process of combing, it needs to complete a high-speed periodic motion that follows the "rise-return-dwell" pattern. Thus, there are stringent requirements on kinematics and dynamics performances of the transmission mechanism of the detaching roller. The conventional mechanical driving mode can generate a large impact and vibrations, and it is difficult to further improve its speed. Therefore, it is particularly important to overcome the shortcomings of the existing drive mode, including long drive chain, high vibration and noise.

Method The paper analyzed the separation and jointing process of comber, and put forward the key points in movement of detaching roller. The segmented fitting method was adopted to fit them, yielding the optimal movement law of detaching roller. The number of teeth of each gear in the system was optimized based on the dynamic analysis of the gear transmission system of detaching roller. Combined with kinematics analysis and relevant requirements, the motions of two servo motors were then planned and the speed curves of the servo motors were determined. The theoretical expectation was verified by software simulation and test evaluation.

Results The curve of displacement of the detaching roller conformed to the "rise-return-dwell" pattern with the maximum error being 0.30 mm, which satisfied the requirements of flock detachment and overlap. The velocity and acceleration at the starting and terminal points were zero, and the detaching roller did not produce rigid or a flexible impact (Fig. 2). Therefore, the fitting results of the motion curve for the detaching roller were ideal. It can be seen from transmission system that, after optimization, the vibration acceleration of most of gears was reduced to varying degrees, and the sum of root mean square vibration accelerations of all gears in the transmission system was reduced by 18.21% compared with the original, achieving the effect of vibration reduction. Vibration accelerations of some gears in the transmission system showed that the speed of the servo motor connected to the sun gear s is always positive, and the speed of the servo motor connected to gear 1 was always negative, that is, both servo motors operate in one direction. Therefore, the motion planning of the servo motor meets the design requirements. In addition, through the results of ADAMS simulation, it can be seen that the detaching roller motion curve obtained by simulation was basically consistent with the motion curve obtained by theoretical calculation. Therefore, the detaching roller drive system designed can make the movement of the detaching roller meet the process requirements. Finally, according to the experimental results, it can be seen that the overall errors between the displacement curve of the detaching roller obtained from the experiment and the theoretical calculation and simulation results was very small, which verified that the detaching roller drive system can replace the conventional mechanical structure, overcome the problems of its long transmission chain and large vibration noise, and complete the drive of the detaching roller. From displacements of different detaching rollers, displacement curves can be obtained by changing the motion law of the servo motor, verifing that the hybrid drive mode of the detaching roller can make the detaching roller meet different process requirements.

Conclusion In this paper, the hybrid drive system of the detaching roller is studied. The driving system can render the motion of the detaching roller flexible. It solves the problems of the long drive chain of the existing detaching roller drive mechanism and the difficulty in adjusting the motion law of the detaching roller. However, this study still needs to be improved. For example, this study considered only the degrees of freedom in the torsional direction in the dynamic model of the driving system of the detaching roller, which is sufficient for engineering. In future research, more factors should be considered to build a dynamic model with multiple degrees of freedom to better reflect the empirical situation.

Key words: comber, detaching roller, hybrid drive, gear transmission system, dynamic

中图分类号: 

  • TS112.2

图1

分离罗拉位移示意图"

图2

分离罗拉运动规律"

图3

分离罗拉齿轮传动系统简图"

图4

分离罗拉齿轮传动系统动力学模型"

表1

现有的分离罗拉齿轮传动系统主要参数"

参数 数值
齿数z zs=32,zs'=25,zpi=22,zp'i=29,zc=95,z1=80,z2=87,z3=28
模数m/mm ms=ms'=mpi=mp'i=mc=m1=2.5,m2=m3=1.25
质量/kg Ms=1.13,Ms'=0.48,Mpi=0.44,Mp'i=0.97,Mc=13.15,M1=9.30,M2=2.51,M3=0.14
齿宽/mm Ts=Ts'=35.0,Tpi=Tp'i=34.5,Tc=T1=T2=T3=40.0
啮合刚度/(N·m-1) kspi=1.08×108,ks'p'i=1.02×108,k1c=1.87×108,k23=1.48×108
扭转刚度/(N·m·rad-1) kpip'i=2.24×104,k2s'=3.24×105

图5

优化前后传动系统中部分齿轮的振动加速度对比"

图6

伺服电动机转速"

图7

仿真与理论计算得到的分离罗拉运动曲线对比"

图8

多轴驱动的精梳机实验平台"

图9

理论、仿真及实验得到的分离罗拉位移"

图10

不同有效输出长度的分离罗拉位移"

[1] 任家智, 马驰, 张一风, 等. 高速节能精梳技术的研究与应用[J]. 纺织学报, 2013, 34(2): 141-145.
REN Jiazhi, MA Chi, ZHANG Yifeng, et al. Research and application of high-speed and energy-saving combing technology[J]. Journal of Textile Research, 2013, 34(2): 141-145.
[2] LI X R, JIANG X M, YANG J C, et al. Study on flock detaching motion of a cotton comber[J]. Journal of The Textile Institute, 2014, 105(8): 789-793.
doi: 10.1080/00405000.2013.861150
[3] 任家智, 高卫东, 谢春萍, 等. 棉精梳机分离罗拉顺转定时对棉网均匀度的影响[J]. 纺织学报, 2014, 35(3): 127-131.
REN Jiazhi, GAO Weidong, XIE Chunping, et al. Influence of forward motion timing of comber detaching roller on evenness of cotton web[J]. Journal of Textile Research, 2014, 35(3): 127-131.
[4] 李留涛, 贾国欣, 任家智. 精梳机分离罗拉传动机构的平衡优化[J]. 纺织学报, 2015, 36(8): 133-138.
LI Liutao, JIA Guoxin, REN Jiazhi. Balance optimization based on detaching roller transmission mechanism of combing machine[J]. Journal of Textile Research, 2015, 36(8): 133-138.
[5] 贾国欣, 任毅, 李留涛. 精梳机分离罗拉连杆传动机构的减振平衡优化[J]. 棉纺织技术, 2015, 43(8): 17-21.
JIA Guoxin, REN Yi, LI Liutao. Vibration damping balance optimization of comber detaching roller rod transmission mechanism[J]. Cotton Textile Technology, 2015, 43(8): 17-21.
[6] 陈佳. 纺纱设备[J]. 纺织导报, 2016(2): 28-36,38.
CHEN Jia. Spinning machinery[J]. China Textile Leader, 2016(2): 28-36,38.
[7] LI X R, JIANG X M, WANG S Z, et al. Driving mechanism of cotton comber's detaching roller based on time-sharing unidirectional drive[J]. Journal of Donghua University (English Edition), 2014, 31(4): 429-432.
[8] 刘立东, 李新荣, 杨海鹏, 等. 棉精梳机分离罗拉伺服驱动研究[J]. 纺织学报, 2020, 41(1): 158-164.
LIU Lidong, LI Xinrong, YANG Haipeng, et al. Research on servo drive of detaching roller of cotton combing machines[J]. Journal of Textile Research, 2020, 41(1): 158-164.
doi: 10.1177/004051757104100212
[9] 杨海鹏, 李新荣, 吕鹏飞, 等. 采用混合驱动的精梳机分离罗拉传动机构[J]. 纺织学报, 2019, 40(4): 122-128.
YANG Haipeng, LI Xinrong, LÜ Pengfei, et al. Detaching roller drive mechanism of a comber based on hybrid-driven[J]. Journal of Textile Research, 2019, 40(4): 122-128.
[10] 任家智, 郁崇文. E7/6型精梳机曲柄半径对工艺性能的影响[J]. 纺织学报, 2004, 25(4): 45-46,140.
REN Jiazhi, YU Chongwen. Influence of crank radius of E7/6 type comber on its process performance[J]. Journal of Textile Research, 2004, 25(4): 45-46,140.
[11] 王晓维, 周国庆, 李新荣. 棉精梳机钳板开闭口时间的研究[J]. 纺织学报, 2015, 36(7): 121-125,130.
WANG Xiaowei, ZHOU Guoqing, LI Xinrong. Study on opening and closing time of clamp plate of cotton combing machine[J]. Journal of Textile Research, 2015, 36(7): 121-125,130.
[12] 华林, 叶德金, 汪小凯, 等. 双伺服驱动高速精冲机主传动系统的运动规划[J]. 华中科技大学学报(自然科学版), 2018, 46(4): 6-11,34.
HUA Lin, YE Dejin, WANG Xiaokai, et al. Motion planning of main drive system of high speed fine blanking press by double servo drive[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(4): 6-11,34.
[13] MATEJIC M S, BLAGOJEVIC M Z, MATEJIC M M. Dynamic behaviour of a planetary reducer with double planet gears[J]. Mechanical Science, 2021, 12(2): 997-1003.
doi: 10.5194/ms-12-997-2021
[14] HAN J C, LIANG L, ZHAO Y. Dynamic performance of planetary gear joint for satellite antenna driving mechanism considering multi-clearance coupling[J]. Energies, 2021, 14(4):1-8.
doi: 10.3390/en14010001
[15] FAN Z X, ZHU C C, SONG C S. Dynamic analysis of planetary gear transmission system considering the flexibility of internal ring gear[J]. Iranian Journal of Science and Technology:Transactions of Mechanical Engineering, 2020, 44(3): 695-706.
doi: 10.1007/s40997-019-00290-3
[1] 许高平, 孙以泽. 移动机械臂牵引卷装纱线的动态建模与控制[J]. 纺织学报, 2024, 45(01): 1-11.
[2] 常辰玉, 王雨薇, 原旭阳, 刘锋, 卢致文. 基于交织点改进弹簧-质点模型的纬编针织物动态变形模拟[J]. 纺织学报, 2024, 45(01): 99-105.
[3] 姜绍华, 梁帅童, 裴刘军, 张红娟, 王际平. 基于概率密度函数的织物染色侵入动力学分析[J]. 纺织学报, 2023, 44(10): 90-97.
[4] 冯清国, 巫鳌飞, 任家智, 陈宇恒. 棉纺精梳机分离罗拉连杆驱动机构动力学仿真及有限元分析[J]. 纺织学报, 2023, 44(09): 197-204.
[5] 邵彦峥, 孙将皓, 魏春艳, 吕丽华. 棉秆皮微晶纤维素/改性壳聚糖吸附纤维制备与性能[J]. 纺织学报, 2023, 44(08): 18-25.
[6] 尚小愉, 朱坚, 王滢, 张先明, 陈文兴. 侧基含磷阻燃共聚酯的制备及其固相增黏反应[J]. 纺织学报, 2023, 44(07): 1-9.
[7] 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136.
[8] 黄晨静, 张蕾, 孙逊, 王晓华. 基于动力学模型的面料抓取机械臂轨迹跟踪控制方法[J]. 纺织学报, 2023, 44(06): 207-214.
[9] 贾艳梅, 于学智. 柞叶染料对柞蚕丝织物的染色及其吸附动力学研究[J]. 纺织学报, 2023, 44(03): 119-125.
[10] 陈宇恒, 高卫东, 任家智. 精梳机分离牵伸力在线检测与规律分析[J]. 纺织学报, 2022, 43(08): 1-6.
[11] 马训鸣, 李峙毅, 吕广雷, 陈勇洁. 新型夹纱器压电驱动器的运动特性[J]. 纺织学报, 2022, 43(08): 176-182.
[12] 陈鹏, 廖世豪, 沈兰萍, 王瑄, 王鹏. 聚乳酸/聚酮共混纤维分散染料染色性能[J]. 纺织学报, 2022, 43(05): 12-17.
[13] 何杨, 张瑞萍, 何勇, 范爱民. 激光改性涤纶织物的分散染料染色性能[J]. 纺织学报, 2022, 43(04): 102-109.
[14] 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49.
[15] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!