纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 45-51.doi: 10.13475/j.fzxb.20220702701

• 纤维材料 • 上一篇    下一篇

聚酰胺原液着色母粒的制备及其性能

李修田1, 宋伟广1,2, 张丽平1, 杜长森2, 付少海1()   

  1. 1.江苏省纺织品数字喷墨印花工程技术研究中心(江南大学), 江苏 无锡 214122
    2.苏州世名科技股份有限公司, 江苏 苏州 215337
  • 收稿日期:2022-07-11 修回日期:2023-02-27 出版日期:2023-11-15 发布日期:2023-12-25
  • 通讯作者: 付少海(1972—),男,教授,博士。主要研究方向为生态染整技术、功能性纳米材料开发及应用技术。E-mail:shaohaifu@hotmail.com
  • 作者简介:李修田(1997—),男,硕士。主要研究方向为颜料改性及其在原液着色纤维中的应用。

Preparation and properties of masterbatch for polyamide dope dyeing

LI Xiutian1, SONG Weiguang1,2, ZHANG Liping1, DU Changsen2, FU Shaohai1()   

  1. 1. Jiangsu Engineering Research Center for Digital Textile Inkjet Printing(Jiangnan University), Wuxi, Jiangsu 214122, China
    2. Suzhou Sunmun Technology Co., Ltd., Suzhou, Jiangsu 215337, China
  • Received:2022-07-11 Revised:2023-02-27 Published:2023-11-15 Online:2023-12-25

摘要:

针对聚酰胺66(PA66)原液着色过程中炭黑在PA66基体中分散性差的问题,首先,将炭黑加入到含有一定质量分数的分散剂的水溶液中,采用超声波分散协同喷雾干燥技术制备了自分散炭黑(SPCB);随后将SPCB再分散于含有一定质量分数PA66盐的水溶液中,制备了PA66盐基炭黑分散体,并通过原位聚合法制备了PA66原液着色母粒;最后,通过熔融共混法制备了PA66膜。探究了分散剂结构和质量分数、炭黑质量分数、超声波处理功率和时间对PA66盐基炭黑分散体粒径、粒径分布及稳定性的影响,分析了SPCB质量分数与PA66膜性能的关系。结果表明:聚乙烯吡咯烷酮相对炭黑质量分数为15%,炭黑相对体系的质量分数为10%,超声波处理功率为1 260 W,时间为80 min时,制备的PA66盐基炭黑分散体粒径最小为184.1 nm,离心稳定性和放置稳定性均在90%以上;SPCB与PA66的相容性良好,在PA66基体中分布均匀,粒径约为200 nm,当其质量分数为0.2%时,制备的PA66膜的熔融温度为259.2 ℃,L*值为26.82。

关键词: 原液着色, 自分散炭黑, 聚酰胺66, 聚乙烯吡咯烷酮, 喷雾干燥, 原位聚合

Abstract:

Objective The conventional dyeing of polyamide 66 (PA66) has the disadvantage of poor uniformity, color depth and color fastness, and also has other problems such as serious environmental pollution and high energy consumption. Dope dyeing refers to adding colorant during and after the polymerization process to produce colored fibers during fiber spinning. In order to meet the increasingly stringent environmental requirements, the dope dyeing technology has high practical value and good prospects for development. In this research, PA66 salt-based carbon black dispersion was prepared, which was further used as a colorant in dope dyeing of PA66.

Method Self-dispersible carbon black (SPCB) was prepared by combining ultrasonic dispersion with spray drying, which was then dispersed in PA66 salt solution to prepare PA66 salt-based carbon black dispersion, PA66 masterbatch was prepared by in situ polymerization method, and finally PA66 film was further prepared by melt blending method. The factors of PA66 salt-based carbon black dispersion were investigated by estimating its particle size and stability. The SPCB influence on the performance of PA66 film was analyzed.

Results Among the dispersants NNO, Tween 20, SMA and polyvinylpyrrolidone (PVP), it was found PVP is the best dispersant to prepare the PA66 salt-based carbon black dispersion with small particle size and good stability. The influence of mass fraction of carbon black, ultrasonic time and power on the dispersion process was investigated. The optimum preparation process was as follows. The mass fraction of PVP to carbon black was 15%, the mass fraction of carbon black to the system was 10%, the ultrasonic treatment power was 1 260 W, and the time was 80 min. The average particle size of the prepared PA66 salt-based carbon black dispersion was 184.1 nm, the centrifugal stability was 96.20%, and the placement stability was 91.85%. The spray-dried SPCB surface was successfully coated with PVP. Compared with the original carbon black, SPCB showed better self-dispersing properties with a narrow particle size distribution. The average particle size of SPCB was 202 nm, which was about 30 nm larger than that of the carbon black dispersion before spray drying. The pigment particles were evenly dispersed in the PA66 matrix with a particle size of about 200 nm. With the increase of SPCB mass fraction, the color change value of PA66 film gradually became smaller, the color tended to be saturated, and the uniformity was better. At SPCB mass fraction of 0.2%, the K/S value was 9.20, L* value was 26.82, a* value was -0.04, and b* value was -0.55. However, the distribution of pigment particles in the matrix hindered the movement of macromolecular chains, which hindered the crystallization of PA66. The melt temperature of the prepared PA66 film was 259.2 ℃, the crystallization temperature was 230.8 ℃, and the crystallinity was 36.5%.

Conclusion Compared with conventional dyeing, dope dyeing enables PA66 to be prepared with better uniformity, color depth and color fastness, dope dyeing is also a cleaner and greener coloring technology. The most critical issue of dope dyeing is to improve the compatibility and dispersion of pigments in PA66 matrix. The pigments were modified by coating through ultrasonic dispersion and spray drying technique in combination, and PA66 masterbatches were prepared by in situ polymerization after mixing with PA66 salt solution. The results showed that no large particle agglomeration occurred in SPCB in PA66 matrix, and the particle size was 200 nm, which indicated that the experiment improved the compatibility and dispersion of pigments in PA66 matrix very well. The research results show that PA66 salt-based carbon black dispersion is a good colorant for dope dyeing of PA66.

Key words: dope dyeing, self-dispersible carbon black, polyamide 66, polyvinylpyrrolidone, spray drying, in situ polymerization

中图分类号: 

  • TS193

图1

PA66母粒制备过程"

表1

分散剂结构对PA66盐基炭黑分散体粒径及稳定性的影响"

分散剂 粒径/
nm
PDI 加入PA66盐
粒径/nm PDI Ss/% Sc/%
NNO 168.0 0.090 384.6 0.081 71.10 85.86
吐温20 160.9 0.069 196.9 0.147 71.76 48.15
SMA 154.2 0.096 793.9 0.121 93.69 94.34
PVP 173.3 0.134 184.1 0.143 96.20 91.85

表2

PVP质量分数对PA66盐基炭黑分散体粒径及稳定性的影响"

PVP质量
分数/%
粒径/nm PDI Ss/% Sc/%
10 209.4 0.218 66.00 80.18
15 184.1 0.143 96.20 91.85
20 186.9 0.090 95.18 90.17
25 192.0 0.140 94.79 91.51

表3

炭黑质量分数对PA66盐基炭黑分散体粒径及稳定性的影响"

炭黑质量
分数/%
粒径/nm PDI Ss/% Sc/%
5 177.1 0.083 83.34 91.13
10 184.1 0.143 96.20 91.85
15 196.8 0.144 96.06 80.23
20 206.1 0.160 95.88 58.85

图2

超声波处理条件对PA66盐基炭黑分散体粒径的影响 注:PVP相对炭黑的质量分数为15%,炭黑相对体系的质量分数为10%,PA66盐在溶剂中的质量分数为10%。"

表4

PA66盐质量分数对PA66盐基炭黑分散体粒径的影响"

PA66盐质量分数/% 10 20 30 40 50
粒径/nm 184 187 210 230 399

图3

原炭黑和SPCB的SEM照片及粒径分布图"

图4

原炭黑、SPCB的FT-IR曲线"

图5

不同SPCB质量分数PA66膜的SEM照片"

图6

不同SPCB质量分数PA66膜DSC升温和降温曲线"

表5

不同SPCB质量分数PA66膜的颜色性能"

SPCB质量
分数/%
K/S L* a* b* ΔE
0.2 9.20 26.82 -0.04 -0.55 0.00
0.4 9.85 26.03 -0.15 -0.71 0.81
0.6 10.03 25.65 -0.05 -0.03 0.78
0.8 10.40 25.41 -0.08 -0.64 0.66
1.0 10.49 25.22 -0.10 -0.43 0.23
[1] 刘辅庭. 酸性染料染色[J]. 现代丝绸科学与技术, 2017, 32(2): 36-40.
LIU Futing. Acid dye dyeing[J]. Modern Silk Science & Technology, 2017, 32(2): 36-40.
[2] 赵涛. 染整工艺与原理(下册)[M]. 北京: 化学工业出版社, 2009:144-145.
ZHAO Tao. Dyeing and finishing process and principle (Volume II)[M]. Beijing: Chemical Industry Press, 2009: 144-145.
[3] 晓兴. 原液着色, 无染的秘诀[J]. 纺织科学研究, 2012 (6): 34-35.
XIAO Xing. The secret of raw liquid coloring and non staining[J]. Textile Science Research, 2012 (6): 34-35.
[4] 高旭倩. 聚酰胺纤维原液着色红母粒的制备及其性能研究[D]. 北京: 北京化工大学, 2020: 11-12.
GAO Xuqian. Preparation and properties of dope dyed red masterbatch for polyamide fiber[D]. Beijing: Beijing University of Chemical Technology, 2020: 11-12.
[5] 靳宏, 张玥, 张玉梅, 等. 基于分子模拟预判Lyocell纤维原液着色体系中溶剂的稳定性[J]. 纺织学报, 2021, 42(10): 1-7.
JIN Hong, ZHANG Yue, ZHANG Yumei, et al. Predicting stability of solvent in dope-dyed Lyocell solution based on molecular simulation[J]. Journal of Textile Research, 2021, 42(10): 1-7.
doi: 10.1177/004051757204200101
[6] 赵晓婷, 金剑, 王利平. 聚酯纤维原液着色技术的研究现状[J]. 合成纤维工业, 2018, 41(2): 51-55.
ZHAO Xiaoting, JIN Jian, WANG Liping. Research status in dope dyeing technology for polyester fiber[J]. China Synthetic Fiber Industry, 2018, 41 (2): 51-55.
[7] PFAFF G. Carbon black pigments[J]. Physical Sciences Reviews, 2022, 7(2):109-125.
doi: 10.1515/psr-2020-0152
[8] 君轩. 炭黑改性[J]. 世界橡胶工业, 2011, 38(3): 43.
JUN Xuan. Carbon black modification[J]. World Rubber Industry, 2011, 38(3): 43.
[9] 毛凌波, 张仁元, 柯秀芳, 等. 分散方式对纳米炭黑分散稳定性的影响[J]. 广东工业大学学报, 2009, 26(3): 13-16.
MAO Lingbo, ZHANG Renyuan, KE Xiufang, et al. Influence of dispersion mode on stability of carbon-black nano-suspensions[J]. Journal of Guangdong University of Technology, 2009, 26(3): 13-16.
[10] 廖振, 徐明, 朱亚伟. 水性炭黑分散体系制备的研究现状[J]. 印染, 2020, 46(8): 57-61.
LIAO Zhen, XU Ming, ZHU Yawei. Research status of the preparation of water-based carbon black dispersion system[J]. China Dyeing and Finishing, 2020, 46(8): 57-61.
[11] WANG L A, ZHANG L P, ZHANG Y, et al. Preparation and characterization of aqueous phase self-dispersed CB/PSSS composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 553:33-40.
[12] 付少海. 超细有机颜料水性分散体系的制备及其性能研究[D]. 无锡: 江南大学, 2006: 47-68.
FU Shaohai. Preparation and properties of waterborne dispersions of ultrafine organic pig[D]. Wuxi: Jiangnan University, 2006: 47-68.
[13] 孙伟泽, 李敏, 张丽平, 等. N-甲基吗啉-N-氧化物基超细炭黑的制备[J]. 纺织学报, 2016, 37(11): 75-79,85.
SUN Weize, LI Min, ZHANG Liping, et al. Preparation of 4-methylmopholine N-oxide based ultrafine carbon black[J]. Journal of Textile Research, 2016, 37(11): 75-79,85.
[14] 沈国良, 徐铁军, 贺光亮, 等. 尼龙66盐水溶液的溶解度与结晶成核诱导期的研究[J]. 合成纤维工业, 1993, 16(6): 22-25.
SHEN Guoliang, XU Tiejun, HE Guangliang, et al. Study of solubility and crystallization nucleation induction period of nylon 66 in brine solution[J]. China Synthetic Fiber Industry, 1993, 16(6): 22-25.
[15] LI Y Y, LIU K, XIAO R. Preparation and characterization of flame-retarded polyamide 66 with melamine cyanurate by in situ polymerization[J]. Macromolecular Research, 2017, 25(8): 779-785.
doi: 10.1007/s13233-017-5081-1
[1] 李睿, 王梦柯, 于春晓, 郑晓頔, 邱志成, 李志勇, 武术方. 原位聚合法聚酰胺6/炭黑复合纤维的制备及其性能[J]. 纺织学报, 2023, 44(10): 1-8.
[2] 史豪秦, 于影, 左雨欣, 刘宜胜, 左春柽. SnO2/聚乙烯吡咯烷酮防腐薄膜的制备及其在柔性铝-空气电池中的应用[J]. 纺织学报, 2023, 44(06): 33-40.
[3] 宋伟广, 王冬, 杜长森, 梁栋, 付少海. 原液着色聚酯纤维原位聚合用自分散纳米炭黑的制备及其性能[J]. 纺织学报, 2023, 44(04): 115-123.
[4] 陈琛, 韩燚, 孙海燕, 姚诚凯, 高超. 花状氧化石墨烯原位展开共聚聚酰胺6及其功能纤维[J]. 纺织学报, 2023, 44(01): 47-55.
[5] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[6] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
[7] 靳宏, 张玥, 张玉梅, 王华平. 基于分子模拟预判Lyocell纤维原液着色体系中溶剂的稳定性[J]. 纺织学报, 2021, 42(10): 1-7.
[8] 邱志成, 李鑫, 李志勇, 王颖, 金剑, 武术方. 原位法连续聚合聚酯/炭黑体系的结构与性能[J]. 纺织学报, 2021, 42(10): 15-21.
[9] 田星, 沙源, 王兵兵, 夏延致. 乌贼墨黑色素着色海藻纤维的制备与表征[J]. 纺织学报, 2021, 42(10): 22-26.
[10] 宋伟广, 王冬, 杜长森, 梁栋, 付少海. 自分散酞菁蓝15:3的制备及其在粘胶纤维原液着色中的应用[J]. 纺织学报, 2021, 42(10): 8-14.
[11] 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114.
[12] 周歆如, 周筱雅, 马咏健, 胡铖烨, 赵晓曼, 洪剑寒, 韩潇. 导电聚苯胺/聚氨酯泡沫的制备及其压力传感性能[J]. 纺织学报, 2021, 42(04): 62-68.
[13] 刘淑强, 靖逸凡, 杨雅茹, 吴改红, 余娟娟, 王凯文, 李惠敏, 李甫, 张曼. 自修复双层微胶囊的制备及其在玄武岩织物上的应用[J]. 纺织学报, 2021, 42(04): 127-131.
[14] 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14.
[15] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!