纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 90-97.doi: 10.13475/j.fzxb.20220605101

• 纺织工程 • 上一篇    下一篇

仿鳞片结构织物的制备及其防刺性能

刘青, 牛丽, 蒋高明, 马丕波()   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2022-06-21 修回日期:2023-01-11 出版日期:2023-11-15 发布日期:2023-12-25
  • 通讯作者: 马丕波(1984—),男,教授,博士。主要研究方向为纺织结构柔性材料设计与纺织结构复合材料。E-mail: mapibo@jiangnan.edu.cn
  • 作者简介:刘青(1994—),女,博士生。主要研究方向为针织结构柔性防刺材料。
  • 基金资助:
    国家自然科学基金项目(11972172);中央高校基本科研业务费专项资金项目(JUSRP22026)

Preparation and stab-resistance of bionic scale-like knitted fabrics

LIU Qing, NIU Li, JIANG Gaoming, MA Pibo()   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2022-06-21 Revised:2023-01-11 Published:2023-11-15 Online:2023-12-25

摘要:

针对目前防刺服层数多、柔韧性差等问题,利用针织横编技术成型能力优异的特点,克服高性能纱线编织复杂结构难的问题,以超高分子量聚乙烯(UHMWPE)纱线为基础,编织了一种类似于穿山甲重叠鳞片结构的仿生鳞片织物,并探索其成形原理。通过准静态穿刺实验研究了不同穿刺位置、方向、鳞片大小、穿刺刀具对鳞片织物防刺性能的影响,利用光学显微镜和扫描电子显微镜观察织物的损伤形貌,并分析鳞片织物的防刺机制。结果表明:鳞片织物成形的主要原理是鳞片连接处线圈的收缩及前、后针床的单独编织;增加刀刃处可切割的线圈数量可有效提升鳞片织物的防刺性能;鳞片织物在2种刀具下的穿刺过程存在差异,其损伤行为主要包括纱线的切割断裂失效及拉伸断裂失效。

关键词: 横编技术, 仿生结构, 鳞片结构织物, 准静态穿刺, 防刺性能, 防刺机制

Abstract:

Objective In view of the problems of many layers and poor flexibility of stab equipment in the current market, a bionic scale-like knitted fabric (SLKF) similar to pangolin's overlapping scale structure was knitted from ultra high molecular weight polyethylene (UHMWPE) yarns by using flat knitting technology, overcoming the difficulty of knitting complex structure with high-performance yarn. This novel fabric with overlapping scale structure is expected to further improve the stab-resistance.

Method The forming principle of SLKF was explored through simulation of fabric structure. Through quasi-static stab experiments (Fig. 4), the influences of different puncture positions, directions, scale sizes and puncture tools on the stab-resistance of the SLKF were studied. Through the structure model of a single scale and the change of fabric parameters, the rules of scale area coverage, fabric weight and scale deflection angle changing with the scale size are further clarified. The damage morphology of the SLKF was observed by optical microscope and scanning electron microscope, and the damage mechanism of the SLKF was analyzed.

Results Inspired by the overlapping structure of pangolin (Fig. 1), nine SLKFs were knitted(Fig.2), and the fabric exhibits excellent forming capabilities during the knitting process. Through simulation of the fabric structure, shrinkage of the adjacent loops in the fabric was utilized to form the overlap scale effect (Fig. 3). When stabbing in the overlapping section, or in the 0° direction, the SLKF demonstrated better stab-resistance, mainly by virtue of the large number of coils at the stab edge (Fig. 5). The stab-resistance of nine distinct SLKFs was investigated (Fig. 6), and the findings reveal a positive correlation between scale size and stab-resistance, indicating that larger scales offer enhanced protection. In order to further study the influence of scale size on stab-resistance, structure model of single scale and changes of fabric parameters was explored (Fig. 7), the results showed that the coverage of the total scale area was increased with the increase of the number of rows, the weight of fabric increased linearly with the increase of the number of rows, and the deflection angle of scales decreased gradually with the increase of the number of longitudinal rows. Two different standard knives D1 and D3 were adopted to explore the stab-resistance of SLKF, and the stabbing speed is 10 mm/min. The results demonstrate that the stab-resistance of SLKF under knife D3 is better than that of D1 (Fig. 8), and the reasons for this phenomenon can be explained as follows: under D1, the fabric failure was mainly caused by yarn cutting and tensile, accompanied by yarn extraction; and under D3, the main reasons for fabric failure were mainly extrusion and stretching, accompanied by a small amount of yarn tensile fracture failure(Fig. 9).

Conclusion In this research, inspired by the overlapping scales structure of pangolin, a bionic SLKF is prepared by UHMWPE yarn, and its forming principle and stab-resistance are discussed. The research shows that the shrinkage of the loops at the scale joint and the separate knitting of the front and back needle beds are the main principles for the formation of SLKFs. Overlapping effect of scales can effectively improve the stab-resistance of the fabric. The stabbing process of the SLKF under the two knives is different, and its damage behavior mainly includes yarn cutting fracture failure and tensile fracture failure. This work can provide reference for the preparation of stab-resistant materials.

Key words: flat knitting technology, bionic structure, scale-like knitted fabric, quasi-static stabbing, stab-resistance, damage mechanism

中图分类号: 

  • TS141.8

图1

穿山甲鳞片结构图及其仿生织物的穿纱工艺和编织工艺模拟图"

图2

9种不同规格的仿鳞片结构织物"

图3

单个鳞片和仿鳞片结构织物的结构模拟"

图4

准静态穿刺实验装置"

图5

不同穿刺位置及方向下织物的准静态穿刺性能"

图6

不同规格仿鳞片结构织物的准静态穿刺性能"

图7

单个鳞片的结构模型及鳞片覆盖率、织物面密度和鳞片偏折角随鳞片大小的变化"

图8

2种穿刺刀具及织物穿刺位移-载荷曲线"

图9

准静态穿刺下织物的破坏形态"

[1] 王秋实, 何彩婷, 王珊, 等. 织物增强柔性防刺复合材料的研究进展[J]. 纺织学报, 2022, 43 (8): 183-188, 205.
WANG Qiushi, HE Caiting, WANG Shan, et al. Research progress in fabric reinforced flexible stab-resistance composites[J]. Journal of Textile Research, 2022, 43 (8): 183-188, 205.
[2] YANG W Q, LIU X Y, YU Y P, et al. Evaluation of stab resistance of coated UHMWPE fabric[J]. Fibers & Textiles in Eastern Europe, 2020, 28 (2): 76-79.
[3] ZHAO H Y, QIANG Y Q, PENG H K, et al. Enhancement of a novel sizing agent in mechanical properties and stab/puncture resistance of Kevlar fabrics[J]. Fibers and Polymers, 2022, 22 (12): 3309-3316.
doi: 10.1007/s12221-021-0432-0
[4] 邱日祥, 韩启龙. 防刺服的现状与发展[J]. 警察技术, 2020 (5): 77-81.
QIU Rixiang, HAN Qilong. Current situation and development of stab resistant clothing[J]. Police Technology, 2020 (5):77-81.
[5] 李凤艳, 叶天宇, 展晓晴, 等. 涤纶与芳纶及超高分子量聚乙烯纤维复合纱防刺织物的制备及其性能[J]. 纺织学报, 2021, 42 (7): 82-88.
LI Fengyan, YE Tianyu, ZHAN Xiaoqing, et al. Preparation and properties of puncture-resistant fabrics made from polyester and aramid or ultrahigh molecular weight polyethylene compound yarns[J]. Journal of Textile Research, 2021, 42 (7): 82-88.
[6] 孙亚鑫, 马丕波. 芳纶纤维衬纬结构纬编织物的防刺性能[J]. 纺织高校基础科学学报, 2022, 35 (1): 1-6.
SUN Yaxin, MA Pibo. Stab resistance of weft-Knitted insertion fabric with Kevlar fibers[J]. Basic Sciences Journal of Textile Universities, 2022, 35 (1): 1-6.
[7] 王新厚, 张琳梅, 孙晓霞. 柔性防刺涤纶/碳化硅织物的制备及其防刺性能[J]. 纺织学报, 2019, 40 (6): 172-176, 182.
WANG Xinhou, ZHANG Linmei, SUN Xiaoxia. Preparation of flexible puncture-proof polyester/SiC and puncture-proof property[J]. Journal of Textile Research, 2019, 40 (6): 172-176, 182.
[8] LI T T, ZHANG X Y, WU L W, et al. Polyethylene terephthalate/basalt stab-resistant sandwich composites based on the box-behnken design: parameter optimization and empirical regression model[J]. Journal of Sandwich Structures & Materials, 2022, 22 (7): 2391-2407.
[9] LI M R, WANG P, BOUSSU F, et al. Investigation of impact performance of 3-dimensional interlock polymer fabrics in double and multi-angle pass stabbing[J]. Materials & Design, 2021. DOI: 10.1016/j.matdes.2021.109775.
[10] XIN Y F. Effects of different silica particles on quasi-static stab resistant properties of fabrics impregnated with shear thickening fluids[J]. Materials and Design, 2014, 64:456-461.
doi: 10.1016/j.matdes.2014.06.060
[11] 陈立富, 于伟东. 人造金刚石填充聚酰亚胺树脂基复合材料防刺性能[J]. 纺织学报, 2020, 41(5): 38-44.
CHEN Lifu, YU Weidong. Stab resistance of composites with synthetic diamond filled polyimide resin matrix[J]. Journal of Textile Research, 2020, 41 (5): 38-44.
doi: 10.1177/004051757104100107
[12] HE Q, CAO S, WANG Y, et al. Impact resistance of shear thickening fluid/Kevlar composite treated with shear-stiffening gel-science direct[J]. Composite Part A: Applied Science and Manufacturing, 2018, 106: 82-90.
doi: 10.1016/j.compositesa.2017.12.019
[13] XIA M M, QUAN Z Z, WANG X L, et al. Preparation and characterization of B4C particle coated composites for stab-resistance[J]. Composite Structures, 2019. DOI: 10.1016/j.compstruct.2019.111370.
[14] YANG W, CHEN I H, GLUDOVATZ B, et al. Natural flexible dermal armor[J]. Advance Materials, 2013, 25: 31-48.
doi: 10.1002/adma.v25.1
[15] JOHNSON A A, BINGHAM G A, MAJEWSKI C E. The design and assessment of bio-inspired additive manufactured stab-resistant armour[J]. Virtual and Physical Prototyping, 2018, 13 (2): 49-57.
doi: 10.1080/17452759.2017.1369438
[16] HE J J. Egg-shell structure design for stab resistant body armor[J]. Materials Today Communications, 2018, 16:26-36.
doi: 10.1016/j.mtcomm.2018.04.006
[17] 宫政. 薄壳仿生型3D打印防刺基板的设计及性能优化[D]. 北京: 北京理工大学, 2017: 46-48.
GONG Zheng. Structure design and optimization on 3D printed bionic shelled stab resistance plate[D]. Beijing: Beijing Institute of Technology, 2017: 46-48.
[18] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(7):67-71.
MA Feifei. Stab-resistant performance and wearability of composite materials made by discrete resin molding[J]. Journal of Textile Research, 2020, 41 (7):67-71.
[19] 于春玲, 姜亚明, 张新伟. 防刺甲片的形状及搭接设计[J]. 纺织导报, 2011(1):77-79.
YU Chunling, JIANG Yaming, ZHANG Xinwei. Shape and overlap design of stab-resistant armor shard[J]. China Textile Leader, 2011(1):77-79.
[20] MARTINI R, BALIT Y, BARTHELAT F. A comparative study of bio-inspired protective scales using 3D printing and mechanical testing[J]. Acta Biomaterialia, 2017, 55: 360-372.
doi: S1742-7061(17)30187-3 pmid: 28323175
[21] 董继萍, 刘晓艳, 于伟东. 织物表面防刺割树脂片形状的确定[J]. 纺织学报, 2017, 38(12):60-64.
DONG Jiping, LIU Xiaoyan, YU Weidong. Determination about geometry of stab-resistant resin flakes on surface of fabric[J]. Journal of Textile Research, 2017, 38 (12):60-64.
[22] 刘宇航, 黄广炎, 张宏, 等. 高性能复合纤维的防刺机理[J]. 兵工学报, 2022, 43 (9): 2143-2151.
doi: 10.12382/bgxb.2021.0513
LIU Yuhang, HUANG Guangyan, ZHANG Hong, et al. Stabbing resistance mechanism of high-performance composite fabrics[J]. Acta Armamentarll, 2022, 43 (9): 2143-2151.
[23] WANG B, SULLIVAN T N. A review of terrestrial, aerial and aquatic keratins: the structure and mechanical properties of pangolin scales, feather shafts and baleen plates[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76: 4-20.
doi: S1751-6161(17)30204-7 pmid: 28522235
[24] WANG B, YANG W, SHERMAN V R, et al. Pangolin armor: overlapping, structure, and mechanical properties of the keratinous scales[J]. Acta Biomaterialia, 2016, 41: 60-74.
doi: 10.1016/j.actbio.2016.05.028 pmid: 27221793
[1] 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212.
[2] 王秋实, 何彩婷, 王珊, 陈美玉, 梁高勇, 孙润军. 织物增强柔性防刺复合材料的研究进展[J]. 纺织学报, 2022, 43(08): 183-188.
[3] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[4] 陈立富, 于伟东. 人造金刚石填充聚酰亚胺树脂基复合材料防刺性能[J]. 纺织学报, 2020, 41(05): 38-44.
[5] 李聃阳, 王瑞, 刘星, 张淑洁, 夏兆鹏, 阎若思, 代二庆. 剪切增稠液对不同结构芳纶织物防刺性能的影响[J]. 纺织学报, 2020, 41(03): 106-112.
[6] 张恒, 甄琪, 刘雍, 宋卫民, 刘让同, 张一风. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019, 40(09): 28-34.
[7] 王新厚, 张琳梅, 孙晓霞. 柔性防刺涤纶/碳化硅织物的制备及其防刺性能[J]. 纺织学报, 2019, 40(06): 171-175.
[8] 张恒, 申屠宝卿, 章伟, 张一风, 崔国士. 聚乙二醇/聚丙烯熔喷非织造材料的叶脉仿生结构及其保液性能[J]. 纺织学报, 2019, 40(05): 18-23.
[9] 杨婉秋, 刘晓艳, 于伟东. 多层防刺材料中间隔织物的缓冲作用[J]. 纺织学报, 2019, 40(04): 51-54.
[10] 邢京京 钱晓明. 织物的防刺机制及刀具形状对防刺性能的影响[J]. 纺织学报, 2017, 38(08): 55-61.
[11] 李宁 宋广礼 刘梁森 张宇群 姜亚明. 芳纶针织物的防刺性能[J]. 纺织学报, 2014, 35(12): 31-0.
[12] 孔祥勇, 缪旭红. 多轴向经编织物的防刺性能[J]. 纺织学报, 2012, 33(7): 58-63.
[13] 李丽娟;蒋高明;缪旭红. 经编防刺织物的结构与性能[J]. 纺织学报, 2011, 32(4): 48-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!