纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 115-122.doi: 10.13475/j.fzxb.20221200401

• 染整与化学品 • 上一篇    下一篇

丁香酚基复合涂层阻燃疏水棉织物的制备及其性能

陈顺1, 钱坤1, 梁付巍1, 郭文文1,2,3()   

  1. 1.江南大学 纺织科学与工程学院, 江苏 无锡 214122
    2.中国科技大学 火灾科学国家重点实验室,安徽 合肥 230026
    3.香港理工大学 纺织服装学院, 香港 100872
  • 收稿日期:2022-12-05 修回日期:2023-09-15 出版日期:2023-12-15 发布日期:2024-01-22
  • 通讯作者: 郭文文(1991—),女,副研究员,博士。主要研究方向为阻燃及多功能纤维织物。E-mail: guoww@jiangnan.edu.cn
  • 作者简介:陈顺(1997—),女,硕士生。主要研究方向为阻燃多功能织物。
  • 基金资助:
    国家自然科学基金项目(22205082);江苏省自然科学基金项目(BK20221098);香港学者计划项目(XJ2020003);双创博士项目(JSSCBS20210821);中国纺织工业联合会应用基础研究项目(J202107)

Preparation and properties of flame retardant hydrophobic cotton fabric with eugenol-based composite coating

CHEN Shun1, QIAN Kun1, LIANG Fuwei1, GUO Wenwen1,2,3()   

  1. 1. Colloge of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, China
    3. Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong 100872, China
  • Received:2022-12-05 Revised:2023-09-15 Published:2023-12-15 Online:2024-01-22

摘要:

为解决棉织物使用过程中易燃易污的问题,采用简单的两步浸渍法对棉织物进行阻燃疏水整理。首先,用丁香酚和二氯化磷酸苯酯合成生物基阻燃剂二丁香基磷酸苯酯(DEP),并用其对棉织物进行阻燃整理。随后,利用甲基三甲氧基硅烷改性锆基金属有机框架(UiO-66)颗粒制备疏水剂,并将其用于阻燃棉织物的疏水整理。最后对所得阻燃疏水棉织物的结构、热稳定性、阻燃性、疏水性和耐污性能等进行研究。结果表明:相比于原棉织物,整理后棉织物的热稳定性能提高,燃烧后成炭明显,表明该复合涂层具有良好的阻燃效果;整理后的棉织物还表现出较好的疏水性能,疏水角为139°,并可耐多种常见污渍。该阻燃疏水复合涂层采用生物质为原料,绿色环保,且操作简便,在制备功能性纺织品方面具备较大的应用潜力。

关键词: 丁香酚, 阻燃整理, 疏水整理, 生物基阻燃剂, 含磷化合物, 棉织物, 功能性纺织品

Abstract:

Objective As the most commonly used natural fiber textile, cotton fabrics are widely applied for various end uses because of their biodegradability, moisture absorption and breathability, softness and wide range of sources. However, cotton fabrics also display extremely flammable, hydrophilic and easily contaminated. In order to solve these problems and further improve the applicability of cotton fabrics in daily life, a simple two-step impregnation method is proposed in this paper to add flame retardancy and hydrophobicity to cotton fabrics.
Method Firstly, eugenol and phenyl dichlorophosphate were used to synthesize the bio-based flame retardant (DEP) by substitution reaction to prepare flame-retardant cotton fabrics. The phosphorus-containing substances in flame retardant can be decomposed in advance, catalyzing the dehydration of cotton fabrics into carbon and improve the thermal stability of cotton fabrics. Subsequently, zirconium based organometallic framework UiO-66 particles were modified with methyltrimethoxysilane to prepare the hydrophobic agent by simple surface modification, used for hydrophobic finishing of flame-retardant cotton fabrics. Low surface energy substances and micro-nano materials are combined on the surface of the fabrics to construct a micro-nano hydrophobic coating.
Results The structure, thermal stability, flame retardancy, hydrophobic capacity and antifouling property of the obtained flame retardant and hydrophobic cotton fabrics were characterized by scanning electron micro-scope (SEM), thermogravimetric analysis (TGA), vertical burning test, water contact angle (WCA) and droplet diagram, respectively. Furthermore, the flame retardant mechanism and hydrophobic mechanism were further investigated. The chemical structure of the product in the FT-IR spectra (Fig. 2) and 1H NMR spectra (Fig. 3) both conform to the chemical structure of the flame retardant, demonstrating the successful synthesis of the flame retardant. The surface morphology of the treated cotton fabric and hydrophobic particles was observed by SEM, and the results showed that the flame retardant and hydrophobic agent were successfully and uniformly attached to the cotton fabric without destroying the original structure of the fabric and not affecting the normal morphology of the cotton fabric (Fig. 4). That the residual char content at 800 ℃ ranges from 1.7% of the raw cotton fabric to 8.6% of DEP3-UiO-66/MTM with an obvious char layer (Fig. 5), indicating that the thermal stability of the treated cotton fabric has been improved, which also reflect the enhancement of flame retardancy of the treated cotton fabric. This is mainly attributed to the flame retardant role played by phosphorus-containing flame retardants in the condensed phase. The LOI of pure cotton and DEP3 were 18.5% and and 26.5% (Tab. 2), respectively. The treated cotton fabric presented good char-forming ability after combustion (Fig. 6), and the introduction of DEP flame retardant coating effectively improves the flame retardancy of cotton fabric. In addition, the treated fabrics show good hydrophobicity. Among them, the WCA of DEP3-UiO-66/MTM is as high as 139° and the slide angle is 28° (Fig. 7). As can be seen from the droplet diagram of the treated cotton fabrics (Fig. 8), DEP3-UiO-66/MTM can withstand a variety of common stains in life such as ink, mud, coffee, milk, tea, acid (hydrochloric acid dyed with methyl red), alkali (sodium hydroxide solution dyed with thymolphthalein) and water droplets, and remain rounded on the surface of the treated cotton fabrics, showing excellent anti-fouling performance. The whiteness and bending length of the flame retardant hydrophobic fabrics were 83.89% and 21.0 cm (Tab. 3), respectively, which were not much different from those of pure cotton fabrics.
Conclusion The results confirm that the modified cotton fabric has good flame-retardant, hydrophobic and antifouling properties. The flame retardant hydrophobic composite coating is constructed via a simple, efficient, eco-friendly way using biomass as the raw material, which is green, environment-friendly and easy to operate. The prepared flame retardant hydrophobic multifunctional fabrics have broad application prospects in protective clothing, medical equipment, clothing, decoration and industrial buildings.

Key words: eugenol, flame retardant, hydrophobic, bio-based flame retardant agent, phosphorus-containing compound, cotton fabric, functional textile

中图分类号: 

  • TS195.5

图1

阻燃剂和疏水剂的制备及阻燃疏水织物的整理工艺"

表1

处理前后棉织物的涂层组成和质量增加率"

样品名称 DEP质
量分数/
%
疏水剂质量分数
(MTM与UiO-66
质量比)/%
质量增
加率/
%
原棉织物(CT) 0
DEP1 9 11.1
DEP2 12 20.3
DEP3 15 31.2
DEP3-MTM 15 10(10:0) 33.0
DEP3-UiO-66/MTM 15 10(9.8:0.2) 35.9

图2

丁香酚和DEP的红外谱图"

图3

丁香酚和DEP的核磁共振氢谱图"

图4

整理前后棉织物的SEM照片"

图5

整理前后棉织物在空气下的TGA和DTG曲线"

表2

整理前后棉织物在空气下的热性能数据"

样品 T5%/℃ Tmax1/℃ Tmax2/℃ 800 ℃时的
残炭量/%
LOI值/
%
CT 291.1 338.5 421.5 1.7 18.5
DEP1 287.0 314.4 496.9 3.8 20.0
DEP2 282.4 310.9 501.4 6.1 22.0
DEP3 262.6 296.1 507.4 8.6 26.5

图6

整理前后棉织物在垂直燃烧过程中的实时燃烧图"

图7

接触角随时间的变化曲线和DEP3-MTM及DEP3-UiO-66/MTM的滑动角测试过程图"

图8

原棉织物和阻燃疏水整理织物的耐污性能"

表3

整理前后棉织物的白度和弯曲长度"

样品 白度/% 弯曲长度/mm
CT 80.11 19.0
DEP1 79.74 18.5
DEP2 78.64 16.0
DEP3 77.98 16.5
DEP3-MTM 83.76 17.5
DEP3-UiO-66/MTM 83.89 21.0
[1] 吉婉丽, 钟少锋, 余雪满. 阻燃超疏水棉纤维的制备及性能[J]. 应用化学, 2020, 37(3): 301-306.
JI Wanli, ZHONG Shaofeng, YU Xueman. Preparation and performance of flame retardant superhydrophobic cotton fiber[J]. Applied Chemistry, 2020, 37(3): 301-306.
[2] CHANG S C, SLOPEK R P, CONDON B, et al. Surface coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process[J]. Industrial & Engineering Chemistry Research, 2014, 53(10): 3805-3812.
[3] HE P S, CHEN X Y, ZHU P, et al. Preparation and flame retardancy of reactive flame retardant for cotton fabric[J]. Journal of Thermal Analysis and Calorimetry, 2018, 132(3): 1771-1781.
[4] 李平阳, 付灿, 董玲玲. 阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2022, 43(6): 107-114.
LI Pingyang, FU Can, DONG Lingling. Preparation and Properties of flame retardant hydrophobic cotton fabrics[J]. Journal of Textile Research, 2022, 43(6): 107-114.
[5] 王利瑶, 贾凌晓, 陈斌. 基于丁香酚的生物基环氧树脂的合成及其复合材料性能研究[J]. 当代化工, 2022, 51(4): 854-859.
WANG Liyao, JIA Lingxiao, CHEN Bin. Synthesis of bio-based epoxy resin based on eugenol and properties of its composites[J]. Contemporary Chemical Industry, 2022, 51(4): 854-859.
[6] MIAO J T, YUAN L, GUAN Q B, et al. Biobased heat resistant epoxy resin with extremely high biomass content from 2,5-Furandicarboxylic acid and eugenol[J]. Acs Sustainable Chemistry & Engineering, 2017, 5(8): 7003-7011.
[7] LIU T, SUN L C, OU R X, et al. Flame retardant eugenol-based thiol-ene polymer networks with high mechanical strength and transparency[J]. Chemical Engineering Journal, 2019, 368: 359-368.
[8] NABIPOUR H, WANG X, SONG L, et al. Graphene oxide/zeolitic imidazolate frameworks-8 coating for cotton fabrics with highly flame retardant, self-cleaning and efficient oil/water separation performances[J]. Materials Chemistry and Physics, 2020. DOI: 10.1016/j.matchemphys.2020.123656.
[9] CHENG X W, LIANG C X, GUAN J P, et al. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric[J]. Applied Surface Science, 2018, 427: 69-80.
[10] MAKUCH E, NOWAK A, GUNTHER A, et al. Enhancement of the antioxidant and skin permeation properties of eugenol by the esterification of eugenol to new derivatives[J]. Amb Express, 2020, 10(1): 1-15.
[11] WANG L, ZHAN J, SONG L, et al. Comparison of the effects of phenyl dichlorophosphate modified and unmodified beta-Iron(III) oxide hydroxide on the thermal, combustion, and mechanical properties of ethylene-vinyl acetate/magnesium hydroxide compo-sites[J]. Journal of Applied Polymer Science, 2014. DOI: 10.1002/app.40112.
[12] FAYE I, DECOSTANZI M, ECOCHARD Y, et al. Eugenol bio-based epoxy thermosets: from cloves to applied materials[J]. Green Chemistry, 2017, 19(21): 5236-5242.
[13] ECOCHARD Y, DECOSTANZI M, NEGRELL C, et al. Cardanol and eugenol based flame retardant epoxy monomers for thermostable networks[J]. Molecules, 2019. DOI: 10.3390/molecules24091818.
[14] 顾海洋, 王冬, 张丽平, 等. 制革污泥蛋白质基棉织物阻燃剂的合成及棉织物阻燃整理[J]. 功能材料, 2022, 53(1): 1196-1203.
GU Haiyang, WANG Dong, ZHANG Liping, et al. Synthesis of protein-based flame retardant for cotton fabrics from tannery sludge and flame retardant Finishing of cotton fabrics[J]. Journal of Functional Materials, 2022, 53(1): 1196-1203.
[1] 陈贝, 任李培, 肖杏芳. 铽-金属有机框架改性棉织物的制备及其pH值探测性能[J]. 纺织学报, 2023, 44(12): 123-129.
[2] 郑贤宏, 唐金好, 李长龙, 王炜. 中空磁性Fe3O4纳米球/MXene复合棉织物的制备及其电磁屏蔽性能[J]. 纺织学报, 2023, 44(11): 142-150.
[3] 王露砚, 张彩宁, 赵倩倩, 马志豪, 王煦漫. 紫外光/氨气双重响应超疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(11): 160-166.
[4] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[5] 钱耀威, 殷连博, 李家炜, 杨晓明, 李耀邦, 戚栋明. 聚乙烯基膦酸/多乙烯多胺层层自组装阻燃棉织物的制备及其性能[J]. 纺织学报, 2023, 44(09): 144-152.
[6] 帅旗, 孙硕, 成世杰, 张宏伟, 左丹英. 氮硼掺杂碳量子点/异氰酸酯型微胶囊复合整理棉织物及其防紫外线性能[J]. 纺织学报, 2023, 44(08): 126-132.
[7] 郭玉秋, 钟毅, 徐红, 毛志平. 拼混活性染料染色多组分定量分析方法[J]. 纺织学报, 2023, 44(07): 141-150.
[8] 陈家辉, 梁跃耀, 陈妮, 房宽峻. 棉织物喷墨印花打印方式的调控及其应用[J]. 纺织学报, 2023, 44(07): 159-166.
[9] 谭家玲, 刘佳音, 于伟东, 殷允杰, 王潮霞. 基于SiO2微胶囊的多色谱温敏变色棉织物制备及其性能[J]. 纺织学报, 2023, 44(07): 167-174.
[10] 王伟, 吴嘉欣, 张晓云, 张传杰, 宫兆庆. 制浆用废旧棉织物的脱色性能及其机制[J]. 纺织学报, 2023, 44(07): 175-183.
[11] 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167.
[12] 杨海富, 罗丽娟, 师建军, 马晓光, 郑振荣. 阻燃防水多功能涤纶篷布的制备及其性能[J]. 纺织学报, 2023, 44(06): 168-174.
[13] 谭启飞, 陈梦莹, 马晟晟, 孙明祥, 代春鹏, 罗仑亭, 陈益人. 湖羊毛非织造阻燃吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(05): 147-154.
[14] 胡安钟, 王成成, 钟子恒, 张丽平, 付少海. 氮化硼纳米片掺杂型快速响应温致变色织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 164-170.
[15] 王小艳, 马子婷, 许长海. 基于高耐碱高耐氧漂分散染料的涤盖棉织物漂染一浴加工工艺[J]. 纺织学报, 2023, 44(05): 38-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!