纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 205-215.doi: 10.13475/j.fzxb.20220903902
GUAN Tuxiang, WU Jian, BAO Ningzhong()
摘要:
为更好解决石墨烯纤维基超级电容器在柔性储能领域所面临的微结构调控困难、电化学性能不足的问题,对微流控纺丝制备石墨烯纤维基柔性超级电容器的研究展开论述。介绍了微流体纺丝通道的类型及其构筑方法,随后聚焦于微流体在微通道中的流体流动行为和凝固机制;在此基础上,围绕纤维结构-性能关系和柔性储能应用介绍了微流控纺丝技术在制备石墨烯纤维基柔性超级电容器方面的研究进展。分析认为:石墨烯纤维基超级电容器具有能量密度高、柔性好、安全性高等特点,在可穿戴电子设备供能领域拥有巨大潜力;为进一步优化纤维微观结构与化学组成,未来发展微流控纺丝制备石墨烯纤维基电极需要综合考量纺丝芯片设计加工、流体数值模拟、纤维微结构构筑3个方面因素。
中图分类号:
[1] | 王霁龙, 刘岩, 景媛媛, 等. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12): 157-165. |
WANG Jilong, LIU Yan, JING Yuanyuan, et al. Advances in fiber-based wearable electronic devices[J]. Journal of Textile Research, 2020, 41(12): 157-165. | |
[2] | 王栋, 卿星, 蒋海青, 等. 纤维材料与可穿戴技术的融合与创新[J]. 纺织学报, 2018, 39(5): 150-154. |
WANG Dong, QING Xing, JIANF Haiqing, et al. Integration and innovation of fiber materials and wearable technology[J] Journal of Textile Research, 2018, 39(5): 150-154. | |
[3] | 聂文琪, 孙江东, 许帅, 等. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 47(7): 200-206. |
NIE Wenqi, SUN Jiangdong, XU Shuai, et al. Research progress in supercapacitors based on flexible textile fibers[J]. Journal of Textile Research, 2022, 43(7): 200-206. | |
[4] | LIU Wei, SONG Minsang, KONG Biao, et al. Flexible and stretchable energy storage: recent advances and future perspectives[J]. Advanced Materials, 2017. DOI: 10.1002/adma.201603436. |
[5] | TAO Jiayou, LIU Nishuang, MA Wenzhen, et al. Solid-state high performance flexible supercapacitors based on polypyrrole-MnO2-carbon fiber hybrid structure[J]. Scientific Reports, 2013. DOI: 10.1038/srep02286. |
[6] | PAN Zhenghui, YANG Jie, ZHANG Qichong, et al. All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility[J]. Advanced Energy Materials, 2019. DOI: 10.1002/aenm.201802753. |
[7] | XIAO Wei, HUANG Jing, ZHOU Wenjie, et al. Surface modification of commercial cotton yarn as electrode for construction of flexible fiber-shaped supercapacitor[J]. Coatings, 2021. DOI: ARTN 108610.3390/coatings11091086. |
[8] | 庞雅莉, 孟佳意, 李昕, 等. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(9): 1-7. |
PANG Yali, MENG Jiayi, LI Xin, et al. Preparation of graphene fibers by wet spinning and fiber characterization[J]. Journal of Textile Research, 2020, 41(9): 1-7. | |
[9] | FANG Bo, CHANG Dan, XU Zhen, et al. A review on graphene fibers: expectations, advances, and pros-pects[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201902664. |
[10] | 何大方, 吴健, 刘战剑, 等. 面向应用的石墨烯制备研究进展[J]. 化工学报, 2015, 66(8): 2888-2894. |
HE Dafang, WU Jian, LIU Zhanjian, et al. Recent advances in preparation of graphene for applications[J]. CIESC Journal, 2015, 66(8): 2888-2894. | |
[11] | XU Zhen, GAO Chao. Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications, 2011. DOI: 10.1038/ncomms1583. |
[12] | TIAN Qishi, XU Zhen, LIU Yingjun, et al. Dry spinning approach to continuous graphene fibers with high toughness[J]. Nanoscale, 2017, 9(34): 12335-12342. |
[13] | DONG Zelin, JIANG Changcheng, CHENG Huhu, et al. Facile fabrication of light, flexible and multifunctional graphene fibers[J]. Advanced Materials, 2012, 24(14): 1856-1861. |
[14] | HUA Chunfei, SHANG Yuanyuan, LI Xiying, et al. Helical graphene oxide fibers as a stretchable sensor and an electrocapillary sucker[J]. Nanoscale, 2016, 8(20): 10659-10668. |
[15] | LIU Qiang, ZHOU Jingwen, SONG Chenhui, et al. 2.2V high performance symmetrical fiber-shaped aqueous supercapacitors enabled by "water-in-salt" gel electrolyte and N-doped graphene fiber[J]. Energy Storage Mater, 2020, 24: 495-503. |
[16] | WANG Chunya, XIA Kailun, WANG Huimin, et al. Advanced carbon for flexible and wearable elec-tronics[J]. Advanced Materials, 2019. DOI: 10.1002/adma.201801072. |
[17] | SACKMANN Eric K, FULTON Anna L, BEEBE David J. The present and future role of microfluidics in biomedical research[J]. Nature, 2014, 507(7491): 181-189. |
[18] | JUN Yesl, KANG Edward, CHAE Sukyoung, et al. Microfluidic spinning of micro- and nano-scale fibers for tissue engineering[J]. Lab on A Chip, 2014, 14(13): 2145-2160. |
[19] | KANG Edward, JEONG Gi Seok, CHOI Yoon Young, et al. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres[J]. Nature Materials, 2011, 10(11): 877-883. |
[20] | MANZ A, GRABER N, WIDMER H M. Miniaturized total chemical-analysis systems: a novel concept for chemical sensing[J]. Sensors and Actuators B-Chemical, 1990, 1(1): 244-248. |
[21] | MCDONALD J Cooper, DUFFY David C, ANDERSON Janelle R, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane)[J]. Electrophoresis, 2000, 21(1): 27-40. |
[22] | THORSEN Todd, MAERKL Sebastian J, QUAKE Stephen R. Microfluidic large-scale integration[J]. Science, 2002, 298(5593): 580-584. |
[23] | ZHANG Mengfan, PENG Xiaotong, FAN Penghui, et al. Recent progress in preparation and application of fibers using microfluidic spinning technology[J]. Macromolecular Chemistry and Physics, 2022. DOI: 10.1002/macp.202100451. |
[24] | JIA Luanluan, HAN Fengxuan, YANG Huili, et al. Microfluidic fabrication of biomimetic helical hydrogel microfibers for blood-vessel-on-a-chip applications[J]. Advanced Healthcare Materials, 2019. DOI: 10.1002/adhm.201900435. |
[25] | SONG Helen, CHEN Delai L, ISMAGILOV Rustem F. Reactions in droplets in microfluidic channels[J]. Angewandte Chemie-International Edition, 2006, 45(44): 7336-7356. |
[26] | HE Yong, WU Yan, FU Jianzhong, et al. Fabrication of paper-based microfluidic analysis devices: a review[J]. RSC Advances, 2015, 5(95): 78109-78127. |
[27] | 蒋艳, 马翠翠, 胡贤巧, 等. 微流控纸芯片的加工技术及其应用[J]. 化学进展, 2014, 26(1): 167-177. |
JIANG Yan, MA Cuicui, HU Xianqiao, et al. Fabrication techniques of microfluidic paper-based chips and their applications[J]. Progress in Chemistry, 2014, 26(1): 167-177. | |
[28] | WHITESIDES George M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373. |
[29] | KIM Jaemyung, COTE Laura J, HUANG Jiaxing. Two dimensional soft material: new faces of graphene oxide[J]. Accounts of Chemical Research, 2012, 45(8): 1356-1364. |
[30] | DEL Giudice, SHEN Amy Q. Shear rheology of graphene oxide dispersions[J]. Current Opinion in Chemical Engineering, 2017, 16: 23-30. |
[31] | VALLÉS Cristina, YOUNG Robert J, LOMAX Deborah J, et al. The rheological behaviour of concentrated dispersions of graphene oxide[J]. Journal of Materials Science, 2014, 49(18): 6311-6320. |
[32] | XU Tong, ZHANG Zhipan, QU Liangti. Graphene-based fibers: recent advances in preparation and applica-tion[J]. Advanced materials, 2020. DOI: 10.1002/adma.201901979. |
[33] | XU Zhen, PENG Li, LIU Yingjun, et al. Experimental guidance to graphene macroscopic wet-spun fibers, continuous papers, and ultralightweight aerogels[J]. Chem Mater, 2016, 29(1): 319-330. |
[34] | CAI Weihua, LAI Ting, YE Jianshan. A spinneret as the key component for surface-porous graphene fibers in high energy density micro-supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(9): 5060-5066. |
[35] | XIN Guoqing, ZHU Weiguang, DENG Yanxiang, et al. Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres[J]. Nature Nanotechnology, 2019, 14(2): 168-175. |
[36] | FANG Bo, XIAO Youhua, XU Zhen, et al. Handedness-controlled and solvent-driven actuators with twisted fibers[J]. Materials Horizons, 2019, 6(6): 1207-1214. |
[37] | GUAN Tuxiang, SHEN Shuo, CHENG Zhisheng, et al. Microfluidic-assembled hierarchical macro-microporous graphene fabrics towards high-performance robust supercapacitors[J]. Chemical Engineering Journal, 2022. DOI: ARTN13587810.1016/j.cej.2022.135878. |
[38] | PARK H, LEE K H, KIM Y B, et al. Dynamic assembly of liquid crystalline graphene oxide gel fibers for ion transport[J]. Science Advances, 2018. DOI: 10.1126/sciadv.aau2104. |
[39] | XIA Yu, MATHIS Tyler S, ZHAO Mengqiang, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes[J]. Nature, 2018, 557(7705): 409-412. |
[40] | DU Xiangyun, LI Qing, WU Guan, et al. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology[J]. Advanced Materials, 2019. DOI: 10.1002/adma.201903733. |
[41] | HONG Yu Lim, RYU Seongwoo, JEONG Hyeon Su, et al. Surface functionalization effect of graphene oxide on its liquid crystalline and assembly behaviors[J]. Applied Surface Science, 2019. DOI: 10.1016/j.apsusc.2019.03.023. |
[42] | SHAO Feng, HU Nantao, SU Yanjie, et al. Non-woven fabric electrodes based on graphene-based fibers for areal-energy-dense flexible solid-state supercapa-citors[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.123692. |
[43] | KANG Edward, CHOI Yoon Young, CHAE Su Kyoung, et al. Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds[J]. Advanced Materials, 2012, 24(31): 4271-4277. |
[44] | XIN Guoqing, YAO Tiankai, SUN Hongtao, et al. Highly thermally conductive and mechanically strong graphene fibers[J]. Science, 2015, 349(6252): 1083-1087. |
[45] | XU Zhen, SUN Haiyan, ZHAO Xiaoli, et al. Ultrastrong fibers assembled from giant graphene oxide sheets[J]. Advanced Materials, 2013, 25(2): 188-193. |
[46] | CAO Jun, ZHANG Yongyi, MEN Chuanling, et al. Programmable writing of graphene oxide/reduced graphene oxide fibers for sensible networks with in situ welded junctions[J]. ACS Nano, 2014, 8(5): 4325-4333. |
[47] | ABOUTALEBI Seyed Hamed, JALILI Rouhollah, ESRAFILZADEH Dorna, et al. High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles[J]. ACS Nano, 2014, 8(3): 2456-2466. |
[48] | CHEN Shaohua, MA Wujun, CHENG Yanhua, et al. Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors[J]. Nano Energy, 2015, 15: 642-653. |
[49] | WU Changcun, WANG Xia, ZHUO Qiqi, et al. A facile continuous wet-spinning of graphene oxide fibers from aqueous solutions at high pH with the introduction of ammonia[J]. Carbon, 2018, 138: 292-299. |
[50] | GUAN Tuxiang, SHEN Liming, BAO Ningzhong. Hydrophilicity improvement of graphene fibers for high-performance flexible supercapacitor[J]. Industrial & Engineering Chemistry Research, 2019, 58(37): 17338-17345. |
[51] | SIMON Patrice, GOGOTSI Yury. Perspectives for electrochemical capacitors and related devices[J]. Nature materials, 2020, 19(11): 1151-1163. |
[52] | MING X, WEI A, LIU Y, et al. 2D-topology-seeded graphitization for highly thermally conductive carbon fibers[J]. Advanced Materials, 2022. DOI: 10.1002/adma.202201867. |
[53] | MA Wujun, CHEN Shaohua, YANG Shengyuan, et al. Hierarchically porous carbon black/graphene hybrid fibers for high performance flexible supercapacitors[J]. RSC Advances, 2016, 6(55): 50112-50118. |
[54] | ZHU Y, MURALI S, STOLLER M D, et al. Carbon-based supercapacitors produced by activation of gra-phene[J]. Science, 2011, 332(6037): 1537-1541. |
[55] | QIU Hui, CHENG Hengyang, MENG Jinku, et al. Magnetothermal microfluidic-assisted hierarchical microfibers for ultrahigh energy density supercapa-citors[J]. Angewandte Chemie-International Edition, 2020, 59(20): 7934-7943. |
[56] | WU X J, WU G, TAN P F, et al. Construction of microfluidic oriented polyaniline nanorod arrays/graphene composite fibers for application in wearable micro-supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(19): 8940-8946. |
[57] | MENG Jinku, WU Guan, WU Xingjiang, et al. Microfluidic-architected nanoarrays/porous core-shell fibers toward robust micro energy storage[J]. Advanced Science, 2020. DOI: 10.1002/advs.201901931. |
[58] | XU Tong, DING Xiaoteng, LIANG Yuan, et al. Direct spinning of fiber supercapacitor[J]. Nanoscale, 2016, 8(24): 12113-12117. |
[59] | KOU Liang, HUANG Tieqi, ZHENG Bingna, et al. Coaxial wet-spun yarn supercapacitors for high energy density and safe wearable electronics[J]. Nature Communications, 2014. DOI: 10.1038/ncomms4754. |
[60] | LI Hongfei, TANG Zijie, LIU Zhuoxin, et al. Evaluating flexibility and wearability of flexible energy storage devices[J]. Joule, 2019, 3(3): 613-619. |
[61] | KHUDIYEV Tural, LEE Jung Tae, COX Jason R, et al. 100 m long thermally drawn supercapacitor fibers with applications to 3D printing and textiles[J]. Advanced Materials, 2020. DOI: 10.1002/adma.202004971. |
[62] | SEYEDIN Shayan, ROMANO Mark S, MINETT Andrew I, et al. Towards the knittability of graphene oxide fibres[J]. Scientific Reports, 2015. DOI: 10.1038/srep14946. |
[63] | LI Zheng, XU Zhen, LIU Yingjun, et al. Multifunctional non-woven fabrics of interfused graphene fibres[J]. Nature Communications, 2016. DOI: 10.1038/ncomms13684. |
[64] | GUAN Tuxiang, CHENG Zhisheng, LI Zemei, et al. Hydrothermal-assisted in situ growth of vertically aligned MoS2 nanosheets on reduced graphene oxide fiber fabrics toward high-performance flexible supercapacitors[J]. Industrial & Engineering Chemistry Research, 2022, 61(11): 3840-3849. |
[1] | 聂文琪, 孙江东, 许帅, 郑贤宏, 徐珍珍. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(07): 200-206. |
[2] | 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70. |
[3] | 张梅 贾紫璇 孙小娟 李宏伟. 石墨烯纤维的湿法纺制及其性能[J]. 纺织学报, 2018, 39(01): 1-5. |
[4] | 张克勤 杜德壮. 石墨烯功能纤维[J]. 纺织学报, 2016, 37(10): 153-157. |
[5] | 邱华, 刘园园, 严静, 刘立群, 葛明桥. 不同横截面形状丝道网络器中三维流场特征[J]. 纺织学报, 2012, 33(6): 20-25. |
[6] | 邱茂伟;王府梅. 机织物透气性能的预测研究[J]. 纺织学报, 2005, 26(4): 73-75. |
|