纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 26-34.doi: 10.13475/j.fzxb.20220702201
孙辉1,2, 崔小港1,2, 彭思伟1,2, 丰江丽1,2, 于斌1,2()
SUN Hui1,2, CUI Xiaogang1,2, PENG Siwei1,2, FENG Jiangli1,2, YU Bin1,2()
摘要:
为制备一种磁性生物可降解空气过滤用熔喷布,将用水热法合成的磁性金属有机框架材料(MMOF)与聚乳酸(PLA)熔融共混后,再通过熔喷加工工艺制成不同质量比的PLA/MMOF复合熔喷布,对其形貌、结构和性能进行研究。结果表明:随着MMOF质量占比的增加,复合熔喷布中纤维的表面粗糙程度增加,平均直径和孔径也不断增大;当MMOF的含量较高时,复合熔喷布的玻璃化转变温度有所增加,其结晶温度和熔融温度随着MMOF质量占比的增加而升高,加入适量的MMOF对PLA的结晶有异相成核作用,且赋予了PLA/MMOF复合熔喷布磁性;与纯PLA熔喷布相比,PLA/MMOF复合熔喷布的透气率提高,过滤阻力降低,当PLA与MMOF的质量比为1:0.03时,复合熔喷布的空气过滤效率和断裂强度均达到最大,分别为65.03%和0.21 MPa。
中图分类号:
[1] | World Health Organization. Ambient air pollution, a global assessment of exposure and burden of disease[M]. Geneva: The WTO Document Production Services, 2016: 121. |
[2] | HARRISON R M, HESTER R E, QUEROL X. Airborne particulate matter: sources, atmospheric processes and health[M]. Cambridge: Royal Society of Chemistry, 2016: 345-352. |
[3] |
COHEN A J, BRAUER M, BURNETT R, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015[J]. The Lancet, 2017, 389 (10082): 1907-1918.
doi: 10.1016/S0140-6736(17)30505-6 |
[4] |
CAMPOS R K, JIN J, RAFAEL G H, et al. Decontamination of SARS-CoV-2 and other RNA viruses from N95 level meltblown poly propylene fabric using heat under different humidities[J]. ACS Nano, 2020, 14(10): 14017-14025.
doi: 10.1021/acsnano.0c06565 |
[5] | 张星, 刘金鑫, 张海峰, 等. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(3): 168-174. |
ZHANG Xing, LIU Jinxin, ZHANG Haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(3): 168-174. | |
[6] |
LI P H, WANG X D, SU M, et al. Characteristics of plastic pollution in the environment: a review[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 107(4): 577-584.
doi: 10.1007/s00128-020-02820-1 |
[7] |
TANG X L, DONG Y, WEI J F, et al. Polypropylene nonwoven loaded with cerium-doped manganese oxides submicron particles for ozone decomposition and air filtration[J]. Separation and Purification Technology, 2021, 262: 118332-118340.
doi: 10.1016/j.seppur.2021.118332 |
[8] | SHALABY S E, BALAKOCY N G, IBRAHIUM Y H, et al. Nonwoven nylon-6 functional filters for protection from air pollutants[J]. Egyptian Journal of Chemistry, 2020, 63 (1): 27-36. |
[9] |
ILYAS R A, SAPUAN S M, HARUSSANI M M, et al. Polylactic acid (PLA) biocomposite: processing, additive manufacturing and advanced applications[J]. Polymers, 2021, 13(8): 1326-1359.
doi: 10.3390/polym13081326 |
[10] |
SIAKENG R, JAWAID M, ARIFFIN H, et al. Natural fiber reinforced polylactic acid composites: a review[J]. Polymer Composites, 2019, 40(2): 446-463.
doi: 10.1002/pc.v40.2 |
[11] |
SINGHVI M S, ZINJARDE S S, GOKHALE D V. Polylactic acid: synthesis and biomedical applications[J]. Journal of Applied Microbiology, 2019, 127(6): 1612-1626.
doi: 10.1111/jam.14290 pmid: 31021482 |
[12] | 谷英姝, 汪滨, 张秀芹, 等. 聚乳酸熔喷非织造材料用于空气过滤领域的研究进展[J]. 化工新型材料, 2021, 49(1): 214-217. |
GU Yingshu, WANG Bin, ZHANG Xiuqin, et al. Research progress on PLA melt-blown nonwoven applied in air filtration[J]. New Chemical Materials, 2021, 49(1): 214-217. | |
[13] |
ZHANG J, CHEN G, BHAT G S, et al. Electret characteristics of melt-blown polylactic acid fabrics for air fil-tration application[J]. Journal of Applied Polymer Science, 2020, 137(4): 48309-48314.
doi: 10.1002/app.v137.4 |
[14] |
TIEN C Y, CHEN J P, LI S, et al. Experimental and theoretical analysis of loading characteristics of different electret media with various properties toward the design of ideal depth filtration for nanoparticles and fine particles[J]. Separation and Purification Technology, 2020, 233: 116002-1160012.
doi: 10.1016/j.seppur.2019.116002 |
[15] |
THAKUR R, DAS D, DAS A. Electret air filters[J]. Separation and Purification Reviews, 2013, 42(2): 87-129.
doi: 10.1080/15422119.2012.681094 |
[16] |
KIM J, CHAN H S, BAE G N, et al. Electrospun magnetic nanoparticle-decorated nanofiber filter and its applications to high-efficiency air filtration[J]. Environmental Science & Technology, 2017, 51(20): 11967-11975.
doi: 10.1021/acs.est.7b02884 |
[17] |
LIU F, LI M Y, LI F, et al. Preparation and properties of PVDF/Fe3O4 nanofibers with magnetic and electret effects and their application in air filtration[J]. Macromolecular Materials and Engineering, 2020, 305(4): 1900856-1900865.
doi: 10.1002/mame.v305.4 |
[18] | PARK H W, JO Y M, PARK Y, et al. Application of magnetic field to iron contained dust capture[J]. Journal of the Korean Applied Science and Technology, 2014, 31(1): 59-65. |
[19] |
CHUI S S Y, LO S M F L, CHARMANT, et al. A chemically functionalizable nanoporous mate-rial [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283: 1148-1150.
doi: 10.1126/science.283.5405.1148 |
[20] |
CHEN B, LI Y H, LI M X, et al. Rapid adsorption of tetracycline in aqueous solution by using MOF-525/graphene oxide composite[J]. Microporous and Mesoporous Materials, 2021, 328: 111457-111465.
doi: 10.1016/j.micromeso.2021.111457 |
[21] |
HU Y C, YANG H, WANG R H, et al. Fabricating Ag@MOF-5 nanoplates by the template of MOF-5 and evaluating its antibacterial activity[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 626: 127093-127098.
doi: 10.1016/j.colsurfa.2021.127093 |
[22] |
ARJMANDIA M, ALTAEE A, ARJMANDI A, et al. A facile and efficient approach to increase the magnetic property of MOF-5[J]. Solid State Sciences, 2020, 106: 106292-106297.
doi: 10.1016/j.solidstatesciences.2020.106292 |
[23] |
SUN H, ZHANG H Y, MAO H M, et al. Facile synthesis of the magnetic metal-organic framework Fe3O4/Cu3(BTC)2 for efficient dye removal[J]. Environmental Chemistry Letters, 2019, 17: 1091-1096.
doi: 10.1007/s10311-018-00833-1 |
[24] | FISCHER E W, STERZEL H J, WEGNER G. Investigation of the structure of solution grown crystals of lactide co-polymers by means of chemical reactions[J]. Colloid and Polymer Science, 1973, 251: 980-990. |
[25] |
ECHEVERRÍA C, LIMÓN I, MUÑOZ-BONILLA A, et al. Development of highly crystalline polylactic acid with β-crystalline phase from the induced alignment of electrospun fibers[J]. Polymers, 2021, 13: 2860-2876.
doi: 10.3390/polym13172860 |
[26] |
DAI X, SHI X W, HUO C G, et al. Study on the poly(lactic acid)/nano MOFs composites: insights into the MOFs-induced crystallization mechanism and the effects of MOFs on the properties of the composites[J]. Thermochimica Acta, 2017, 657: 39-46.
doi: 10.1016/j.tca.2017.09.015 |
[1] | 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126. |
[2] | 聂文琪, 许帅, 高俊帅, 方斌, 孙江东. 聚(3-羟基丁酸-3-羟基戊酸酯)改性涤纶长丝的降解性能[J]. 纺织学报, 2023, 44(09): 35-42. |
[3] | 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98. |
[4] | 谷英姝, 朱燕龙, 汪滨, 董振峰, 谷潇夏, 杨昌兰, 崔萌, 张秀芹. 聚乳酸/驻极体熔喷非织造材料的制备及其性能[J]. 纺织学报, 2023, 44(08): 41-49. |
[5] | 赵明顺, 陈枭雄, 于金超, 潘志娟. 光致变色聚乳酸纤维的纺制及其微观结构与性能[J]. 纺织学报, 2023, 44(07): 10-17. |
[6] | 张晋, 张林军, 解云川, 王健, 贾寅峰, 路涛, 张志成. 防护口罩用改性长效聚(偏氟乙烯-三氟乙烯)压电纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 26-32. |
[7] | 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136. |
[8] | 夏榆, 姚菊明, 周杰, 毛梦慧, 张玉梅, 姚勇波. 聚丁二酸丁二醇酯/丝胶蛋白共混纤维的制备及其性能[J]. 纺织学报, 2023, 44(04): 1-7. |
[9] | 钱红飞, KOBIR MD. Foysal, 陈龙, 李林祥, 方帅军. 聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能[J]. 纺织学报, 2023, 44(03): 104-110. |
[10] | 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43. |
[11] | 张宇静, 陈连节, 张思东, 张强, 黄瑞杰, 叶翔宇, 汪伦合, 宣晓雅, 于斌, 朱斐超. 高熔融指数聚乳酸母粒的制备及其熔喷材料的可纺性[J]. 纺织学报, 2023, 44(02): 55-62. |
[12] | 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21. |
[13] | 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8. |
[14] | 吴焕岭, 谢周良, 汪阳, 孙万超, 康正芳, 徐国华. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 9-15. |
[15] | 程燕婷, 孟家光, 薛涛, 支超. 3D打印纬平针面料的制备[J]. 纺织学报, 2022, 43(09): 115-119. |
|