纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 26-34.doi: 10.13475/j.fzxb.20220702201

• 纤维材料 • 上一篇    下一篇

聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能

孙辉1,2, 崔小港1,2, 彭思伟1,2, 丰江丽1,2, 于斌1,2()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江省现代纺织技术创新中心, 浙江 绍兴 312000
  • 收稿日期:2022-12-08 修回日期:2023-03-17 出版日期:2023-12-15 发布日期:2024-01-22
  • 通讯作者: 于斌(1977—),男,教授,博士。主要研究方向为高性能非织造材料的制备与研究。E-mail:yubin1880@126.com
  • 作者简介:孙辉(1976—),女,副教授,博士。主要研究方向为生物可降解纺织材料的功能化改性。
  • 基金资助:
    浙江省自然科学基金项目(LTGS23E030005)

Preparation of polylactic acid/magnetic metal organic frame material composite melt-blown fabrics and air filtration performance

SUN Hui1,2, CUI Xiaogang1,2, PENG Siwei1,2, FENG Jiangli1,2, YU Bin1,2()   

  1. 1. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, Zhejiang 312000, China
  • Received:2022-12-08 Revised:2023-03-17 Published:2023-12-15 Online:2024-01-22

摘要:

为制备一种磁性生物可降解空气过滤用熔喷布,将用水热法合成的磁性金属有机框架材料(MMOF)与聚乳酸(PLA)熔融共混后,再通过熔喷加工工艺制成不同质量比的PLA/MMOF复合熔喷布,对其形貌、结构和性能进行研究。结果表明:随着MMOF质量占比的增加,复合熔喷布中纤维的表面粗糙程度增加,平均直径和孔径也不断增大;当MMOF的含量较高时,复合熔喷布的玻璃化转变温度有所增加,其结晶温度和熔融温度随着MMOF质量占比的增加而升高,加入适量的MMOF对PLA的结晶有异相成核作用,且赋予了PLA/MMOF复合熔喷布磁性;与纯PLA熔喷布相比,PLA/MMOF复合熔喷布的透气率提高,过滤阻力降低,当PLA与MMOF的质量比为1:0.03时,复合熔喷布的空气过滤效率和断裂强度均达到最大,分别为65.03%和0.21 MPa。

关键词: 聚乳酸, 磁性金属有机框架材料, 熔喷布, 空气过滤性能, 生物可降解

Abstract:

Objective The rapid development of modern industry and agriculture has promoted the progress of society and improved the quality of people's life. However, the air pollution problem accompanied by the development also poses a serious threat to public health. Melt-blown filter materials with the advantages of high protection, simple preparation process and low price can provide strong defense for human health. In order to prepare the magnetic biodegradable melt-blown air filter material with high filtration efficiency, a magnetic metal organic frame mate-rial (MMOF) was synthesized and mixed with polylactic acid (PLA) to prepare PLA/MMOF composite melt-blown fabrics.
Method MMOF was first synthesized via the hydrothermal method and mixed with PLA resin in different mass ratios by the melt blending in a twin-screw extruder. Then these blends were granulated to obtain PLA/MMOF composite master batches. After that, PLA/MMOF composite master batches were fabricated into the composite melt-blown fabrics with different mass ratios by use of a micro melt-blown testing machine. The morphology, structure, thermal behavior, magnetism, air filtration and mechanical properties of PLA/MMOF composite melt-blown fabrics were characterized and studied.
Results It could be seen that the fiber surface of pure PLA melt-blown fabrics was smooth and had a few small grooves. For PLA/MMOF composite melt-blown fabrics, some MMOF particles appeared on the fiber surface. The fiber surface of the composite melt-blown fabrics became more and more rough with the increasing of the mass of MMOF (Fig. 1). Moreover, the average fiber diameter and pore size of PLA/MMOF composite melt-blown fabrics also increased when the mass of MMOF increased (Fig. 2 and Fig. 3). The addition of MMOF did not change the crystalline structure of PLA, but the higher mass of MMOF inhibited the PLA crystallization (Fig. 4). When the mass ratio of PLA to MMOF was 1:0.03 and 1:0.05, the glass transition temperature of the composite melt-blown fabrics slightly enhanced compared to the pure PLA melt-blown fabric. The crystalline and melting temperatures of the composite melt-blown fabrics increased with the increasing of the mass of MMOF. The moderate input of MMOF had a heterogeneous nucleation effect on PLA crystallization (Fig. 5 and Tab. 2). When the mass of MMOF increased, the saturation magnetic strength of PLA/MMOF composite melt-blown fabrics was also continuously enhanced (Fig. 6). In comparison to the pure PLA melt-blown fabric, the air permeability of the composite melt-blown fabrics was increased, while the filtration resistance reduced. The filtration efficiency of PLA/MMOF composite melt-blown fabric reached the maximum of 65.03% when the mass ratio of PLA to MMOF was 1:0.03 (Fig. 7). The tensile strength of pure PLA melt-blown fabric was about 0.16 MPa, and the elongation at break was about 76.80%. When MMOF was incorporated, the tensile strength of the composite melt-blown materials first enhanced and then reduced. The tensile strength reached the maximum of 0.21 MPa when the mass ratio of PLA to MMOF was 1:0.03. On the other hand, the elongation at break of the composite melt-blown fabrics enhanced with the increasing of MMOF mass (Fig. 8 and Tab. 3).
Conclusion The incorporation of MMOF endows the PLA/MMOF composite melt-blown fabrics with magnetism and improves the air filtration performances. When the mass ratio of PLA to MMOF is 1:0.03, the filtration efficiency and tensile strength of the composite melt-blown fabric reach the maximum. It is believed that PLA/MMOF composite melt-blown fabric with a mass ratio of PLA to MMOF is 1:0.03 has the optimal overall performances. The finding of this research provides some theoretical references for the development of magnetic PLA-based melt-blown filter materials.

Key words: polylactic acid, magnetic metal organic frame material, melt-blown material, air filtration performance, biodegradablility

中图分类号: 

  • TS176

表1

PLA/MMOF复合熔喷布的质量比"

样品编号 PLA与MMOF的质量比
M1 1:0
M2 1:0.01
M3 1:0.03
M4 1:0.05
M5 1:0.07

图1

纯PLA及不同质量比的PLA/MMOF复合熔喷布的SEM照片"

图2

纯PLA及不同质量比的PLA/MMOF复合熔喷布的纤维直径分布"

图3

纯PLA及不同质量比的PLA/MMOF复合熔喷布的孔径分布"

图4

纯PLA及不同质量比的PLA/MMOF复合熔喷布的XRD谱图"

图5

纯PLA及不同质量比的PLA/MMOF复合熔喷布的DSC曲线"

表2

纯PLA及不同质量比的PLA/MMOF复合熔喷布的热性能参数"

样品编号 Tg/℃ Tcc/℃ Tm1/℃ Tm2/℃ Xc/%
M1 58.93 110.93 145.93 157.93 3.06
M2 58.93 109.93 147.93 159.93 3.35
M3 58.93 111.93 146.93 158.93 3.03
M4 59.93 112.93 148.93 160.93 2.34
M5 59.93 115.93 149.93 160.93 2.12

图6

不同质量比的PLA/MMOF复合熔喷布的磁滞曲线"

图7

纯PLA及不同质量比的PLA/MMOF复合熔喷布的过滤性能和透气率"

图8

纯PLA及不同质量比的PLA/MMOF复合熔喷布的应力-应变曲线"

表3

纯PLA及不同质量比的PLA/MMOF复合熔喷布的拉伸性能参数"

样品编号 断裂强度/MPa 断裂伸长率/%
M1 0.16±0.040 76.80±1.35
M2 0.20±0.013 93.77±2.78
M3 0.21±0.057 97.20±2.05
M4 0.15±0.098 108.96±3.96
M5 0.13±0.023 111.33±4.93
[1] World Health Organization. Ambient air pollution, a global assessment of exposure and burden of disease[M]. Geneva: The WTO Document Production Services, 2016: 121.
[2] HARRISON R M, HESTER R E, QUEROL X. Airborne particulate matter: sources, atmospheric processes and health[M]. Cambridge: Royal Society of Chemistry, 2016: 345-352.
[3] COHEN A J, BRAUER M, BURNETT R, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015[J]. The Lancet, 2017, 389 (10082): 1907-1918.
doi: 10.1016/S0140-6736(17)30505-6
[4] CAMPOS R K, JIN J, RAFAEL G H, et al. Decontamination of SARS-CoV-2 and other RNA viruses from N95 level meltblown poly propylene fabric using heat under different humidities[J]. ACS Nano, 2020, 14(10): 14017-14025.
doi: 10.1021/acsnano.0c06565
[5] 张星, 刘金鑫, 张海峰, 等. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(3): 168-174.
ZHANG Xing, LIU Jinxin, ZHANG Haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(3): 168-174.
[6] LI P H, WANG X D, SU M, et al. Characteristics of plastic pollution in the environment: a review[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 107(4): 577-584.
doi: 10.1007/s00128-020-02820-1
[7] TANG X L, DONG Y, WEI J F, et al. Polypropylene nonwoven loaded with cerium-doped manganese oxides submicron particles for ozone decomposition and air filtration[J]. Separation and Purification Technology, 2021, 262: 118332-118340.
doi: 10.1016/j.seppur.2021.118332
[8] SHALABY S E, BALAKOCY N G, IBRAHIUM Y H, et al. Nonwoven nylon-6 functional filters for protection from air pollutants[J]. Egyptian Journal of Chemistry, 2020, 63 (1): 27-36.
[9] ILYAS R A, SAPUAN S M, HARUSSANI M M, et al. Polylactic acid (PLA) biocomposite: processing, additive manufacturing and advanced applications[J]. Polymers, 2021, 13(8): 1326-1359.
doi: 10.3390/polym13081326
[10] SIAKENG R, JAWAID M, ARIFFIN H, et al. Natural fiber reinforced polylactic acid composites: a review[J]. Polymer Composites, 2019, 40(2): 446-463.
doi: 10.1002/pc.v40.2
[11] SINGHVI M S, ZINJARDE S S, GOKHALE D V. Polylactic acid: synthesis and biomedical applications[J]. Journal of Applied Microbiology, 2019, 127(6): 1612-1626.
doi: 10.1111/jam.14290 pmid: 31021482
[12] 谷英姝, 汪滨, 张秀芹, 等. 聚乳酸熔喷非织造材料用于空气过滤领域的研究进展[J]. 化工新型材料, 2021, 49(1): 214-217.
GU Yingshu, WANG Bin, ZHANG Xiuqin, et al. Research progress on PLA melt-blown nonwoven applied in air filtration[J]. New Chemical Materials, 2021, 49(1): 214-217.
[13] ZHANG J, CHEN G, BHAT G S, et al. Electret characteristics of melt-blown polylactic acid fabrics for air fil-tration application[J]. Journal of Applied Polymer Science, 2020, 137(4): 48309-48314.
doi: 10.1002/app.v137.4
[14] TIEN C Y, CHEN J P, LI S, et al. Experimental and theoretical analysis of loading characteristics of different electret media with various properties toward the design of ideal depth filtration for nanoparticles and fine particles[J]. Separation and Purification Technology, 2020, 233: 116002-1160012.
doi: 10.1016/j.seppur.2019.116002
[15] THAKUR R, DAS D, DAS A. Electret air filters[J]. Separation and Purification Reviews, 2013, 42(2): 87-129.
doi: 10.1080/15422119.2012.681094
[16] KIM J, CHAN H S, BAE G N, et al. Electrospun magnetic nanoparticle-decorated nanofiber filter and its applications to high-efficiency air filtration[J]. Environmental Science & Technology, 2017, 51(20): 11967-11975.
doi: 10.1021/acs.est.7b02884
[17] LIU F, LI M Y, LI F, et al. Preparation and properties of PVDF/Fe3O4 nanofibers with magnetic and electret effects and their application in air filtration[J]. Macromolecular Materials and Engineering, 2020, 305(4): 1900856-1900865.
doi: 10.1002/mame.v305.4
[18] PARK H W, JO Y M, PARK Y, et al. Application of magnetic field to iron contained dust capture[J]. Journal of the Korean Applied Science and Technology, 2014, 31(1): 59-65.
[19] CHUI S S Y, LO S M F L, CHARMANT, et al. A chemically functionalizable nanoporous mate-rial [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283: 1148-1150.
doi: 10.1126/science.283.5405.1148
[20] CHEN B, LI Y H, LI M X, et al. Rapid adsorption of tetracycline in aqueous solution by using MOF-525/graphene oxide composite[J]. Microporous and Mesoporous Materials, 2021, 328: 111457-111465.
doi: 10.1016/j.micromeso.2021.111457
[21] HU Y C, YANG H, WANG R H, et al. Fabricating Ag@MOF-5 nanoplates by the template of MOF-5 and evaluating its antibacterial activity[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 626: 127093-127098.
doi: 10.1016/j.colsurfa.2021.127093
[22] ARJMANDIA M, ALTAEE A, ARJMANDI A, et al. A facile and efficient approach to increase the magnetic property of MOF-5[J]. Solid State Sciences, 2020, 106: 106292-106297.
doi: 10.1016/j.solidstatesciences.2020.106292
[23] SUN H, ZHANG H Y, MAO H M, et al. Facile synthesis of the magnetic metal-organic framework Fe3O4/Cu3(BTC)2 for efficient dye removal[J]. Environmental Chemistry Letters, 2019, 17: 1091-1096.
doi: 10.1007/s10311-018-00833-1
[24] FISCHER E W, STERZEL H J, WEGNER G. Investigation of the structure of solution grown crystals of lactide co-polymers by means of chemical reactions[J]. Colloid and Polymer Science, 1973, 251: 980-990.
[25] ECHEVERRÍA C, LIMÓN I, MUÑOZ-BONILLA A, et al. Development of highly crystalline polylactic acid with β-crystalline phase from the induced alignment of electrospun fibers[J]. Polymers, 2021, 13: 2860-2876.
doi: 10.3390/polym13172860
[26] DAI X, SHI X W, HUO C G, et al. Study on the poly(lactic acid)/nano MOFs composites: insights into the MOFs-induced crystallization mechanism and the effects of MOFs on the properties of the composites[J]. Thermochimica Acta, 2017, 657: 39-46.
doi: 10.1016/j.tca.2017.09.015
[1] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[2] 聂文琪, 许帅, 高俊帅, 方斌, 孙江东. 聚(3-羟基丁酸-3-羟基戊酸酯)改性涤纶长丝的降解性能[J]. 纺织学报, 2023, 44(09): 35-42.
[3] 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98.
[4] 谷英姝, 朱燕龙, 汪滨, 董振峰, 谷潇夏, 杨昌兰, 崔萌, 张秀芹. 聚乳酸/驻极体熔喷非织造材料的制备及其性能[J]. 纺织学报, 2023, 44(08): 41-49.
[5] 赵明顺, 陈枭雄, 于金超, 潘志娟. 光致变色聚乳酸纤维的纺制及其微观结构与性能[J]. 纺织学报, 2023, 44(07): 10-17.
[6] 张晋, 张林军, 解云川, 王健, 贾寅峰, 路涛, 张志成. 防护口罩用改性长效聚(偏氟乙烯-三氟乙烯)压电纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 26-32.
[7] 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136.
[8] 夏榆, 姚菊明, 周杰, 毛梦慧, 张玉梅, 姚勇波. 聚丁二酸丁二醇酯/丝胶蛋白共混纤维的制备及其性能[J]. 纺织学报, 2023, 44(04): 1-7.
[9] 钱红飞, KOBIR MD. Foysal, 陈龙, 李林祥, 方帅军. 聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能[J]. 纺织学报, 2023, 44(03): 104-110.
[10] 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43.
[11] 张宇静, 陈连节, 张思东, 张强, 黄瑞杰, 叶翔宇, 汪伦合, 宣晓雅, 于斌, 朱斐超. 高熔融指数聚乳酸母粒的制备及其熔喷材料的可纺性[J]. 纺织学报, 2023, 44(02): 55-62.
[12] 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21.
[13] 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8.
[14] 吴焕岭, 谢周良, 汪阳, 孙万超, 康正芳, 徐国华. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 9-15.
[15] 程燕婷, 孟家光, 薛涛, 支超. 3D打印纬平针面料的制备[J]. 纺织学报, 2022, 43(09): 115-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!