纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 136-145.doi: 10.13475/j.fzxb.20230201601

• 染整工程 • 上一篇    下一篇

表面活性剂与纳米颗粒协同稳定Pickering有机硅乳液的制备及其应用性能

范奥运1,2, 沈军炎2, 杨雷1,2(), 李剑浩3, 张志坚4   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江省现代纺织技术创新中心(鉴湖实验室), 浙江 绍兴 312033
    3.浙江科峰有机硅股份有限公司, 浙江 嘉兴 314423
    4.浙江普朗思化学有限公司, 浙江 绍兴 312033
  • 收稿日期:2023-02-09 修回日期:2023-05-29 出版日期:2024-01-15 发布日期:2024-03-14
  • 通讯作者: 杨雷(1975—),男,教授,博士。主要研究方向为功能纺织助剂设计与开发。E-mail:yanglei@zstu.edu.cn
  • 作者简介:范奥运(1996—),男,硕士。主要研究方向为功能性高分子化合物的研发。
  • 基金资助:
    海宁市科技计划工业项目(2022001);浙江省现代纺织技术创新中心(鉴湖实验室)定向项目(CXZX2022005HD);浙江省现代纺织技术创新中心(鉴湖实验室)定向项目(CXZX2022006HD)

Preparetion and application of silicones Pickering emulsion synergistically stabilized with surfactant and nanoparticles

FAN Aoyun1,2, SHEN Junyan2, YANG Lei1,2(), LI Jianhao3, ZHANG Zhijian4   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310018, China
    2. Zhejiang Provincial Innovation Center of Modern Textile Technology(Jianhu Laboratory),Shaoxing, Zhejiang 312033, China
    3. Zhejiang Kefeng Silicone Co., Ltd., Jiaxing, Zhejiang 314423, China
    4. Zhejiang Prance Chemical Co., Ltd., Shaoxing, Zhejiang 312033, China
  • Received:2023-02-09 Revised:2023-05-29 Published:2024-01-15 Online:2024-03-14

摘要:

针对目前有机硅平滑剂乳液往往存在分散稳定性差或高剂量表面活性剂引起的应用性能降低等问题,以聚丙烯酸异辛酯的共聚物胶乳(PEHA)为Pickering颗粒,协同表面活性剂,用于制备“油/水”Pickering有机硅乳液,并将其用于织物后整理。考察了PEHA粒径、表面亲水改性及PEHA质量分数对有机硅乳液分散稳定性的影响,通过对整理残液化学需氧量(COD)和整理织物表面摩擦因数的研究,考察了表面活性剂与Pickering纳米颗粒协同稳定对有机硅乳液应用性能的影响。结果表明:PEHA颗粒吸附在有机硅液滴的表面,形成机械阻隔,提升有机硅乳液的分散稳定性,180 nm的PEHA颗粒的稳定效率最佳,90 nm时的稳定效率最差;表面亲水改性能显著提高PEHA稳定乳液的效率,在质量分数仅为10%时,即可实现乳液稳定;最佳稳定方案可使表面活性剂质量分数降低60%以上;浸轧整理织物时,相比表面活性剂独自稳定的体系,Pickering体系吸附织物效率更高,整理后残液的COD值降低63%,整理织物表面静、动摩擦因数分别降低至0.51与0.49,即“Pickering/表面活性剂”协同稳定有机硅乳液具有良好的应用性能。

关键词: 有机硅乳液, Pickering乳液, 化学需氧量, 后整理剂, 摩擦因数, 织物整理

Abstract:

Objective Silicones having low surface energy, excellent lubricity, thermal stability, and hydrophobicity, are widely used as finishing agents for endowing the finished fabrics with softness, fluffiness, smoothness, as well as other special features. Silicones must be pre-homogenized into emulsions before application. However, higher emulsion stability means higher content of surfactants for even more than 50% of the silicone mass. Consequently, the higher content of surfactant not only increases the cost of emulsion production but also hinders the silicone adsorption onto the fabrics, resulting in the low efficiency of these additives. While the high concentration of additive residues causes COD to increase in the working liquid, the processing burden of contaminated water treatment also got increased. Hence, it is extremely urgent to develop a highly efficient and feasible stabilization system for silicones.

Method Isooctyl acrylate (EHA) and hydrophilically modified isooctyl acrylate (HPEHA) copolymer latex particles were prepared by semi-continuous seed emulsion polymerization, which were used as Pickering particles. A series of silicone oil/water (O/W) emulsions dosage co-stabilized by Pickering particles were prepared, aiming at development of stabization system with reduced dosage of surfactants. The Pickering particle co-stabilized emulsions were adopted to finish fabrics. The influence of philically modified isooctyl acrylate (PEHA) particle size, dosage, and surface hydrophilic modification on the dispersion stability of the emulsions, as well as Pickering particles on the surface friction coefficients of the finished fabrics and COD values of wastewater, were investigated.

Results PEHA and the hydrophilically modified PEHA (HPEHA) latex were dried in the first stage. The resulted latex films were analyzed with infrared spectrometer and video contact angle measuring instrument. The results demonstrated the successful hydrophilic modification of PEHA. In order to obtain a stable emulsion, the dosage of surfactant to stabilize the emulsion was as high as 21% of the mass of silicone. When synergistic stabilization system composing of 7% of 180 nm-PEHA and 5% of PEHA was applied, the silicones emulsion exhibited excellent stability, indicating high stabilization efficiency of the synergistic stabilization system. Compared to the smaller PEHA particles, PEHA with larger size showed enhanced stabilization capacity as indicated by the requirement of less PEHA. The stabilization efficiency could be further improved by application of Pickering particles with water contact angle close to 90°(for example HPEHA). In terms of the synergistic stabilization system, with the decrease of (H)PEHA particle size and increase of the (H)PEHA dosage, the droplet size of silicones emulsion decreased accordingly. When the Pickering particle size, as well as dosage, was nearly the same, the droplet size of the silicone emulsion was much smaller when replacing PEHA with HPEHA. The stabilization system also exerted significant effects on the COD values of the residual working fluid, and the slippage of the finished fabrics. When the emulsion was stabilized by surfactant alone, with the increase of surfactant dosage in the emulsion, the COD values of the residual working fluid increased sharply. It demonstrated that the method to enhance the dispersion stability of the emulsion by increasing the amount of surfactant caused a large amount of silicone to remain in the residual liquid, which not only caused the waste of additives and the burden of sewage treatment, but also caused the deterioration of the slippage of the finishing fabrics. By replacing the surfactant-stabilized system with synergistic stabilization one, the finished fabric would have a lower coefficient of surface friction and higher slippage, and the COD values of the residual working fluid would be much lower. The reason could be ascribed to the cationic HPEHA particles adsorbed on the surface of the emulsion droplet, which enhanced the positive electricity of the droplet and promoted the adsorption of the droplet to the negatively charged polyester fabric.

Conclusion Pickering particles that were adopted to stabilize silicones emulsion could be obtained by emulsion polymerization. The particle sizes and surface of Pickering particles were successfully tailor-made by emulsion polymerization recipes and post-addition of hydrophilic monomers at the final stage of reaction, respectively. When the contact angles between the Pickering particle latex films and water were close to 90°, the stabilization efficiency of the synergistic stabilization system would be significantly improved, leading to the reduction of the dosage of surfactant and Pickering particles up to 60% and 90%, respectively. With the increase in the dosage of Pickering particles, the stability of the silicone emulsions was improved, and the average droplet size got decreased. The larger Pickering particles led to the silicones emulsions with enhanced stability and increased average droplet sizes of emulsions. Compared to that in the emulsion stabilized by surfactant alone, silicone in the synergistically stabilized Pickering emulsions showed higher adsorption efficiency on fabrics, which produced fabrics with lower surface friction coefficient and waste water with lowered COD value.

Key words: silicones emulsion, Pickering emulsion, chemical oxygen demand(COD), finishing agent, friction coefficient, fabric finishing

中图分类号: 

  • TS195.2

表1

Pickering颗粒的合成方案及性质"

Pickering
颗粒
CTAB
质量/g
HEA
质量/g
DMC
质量/g
接触角/
(°)
Zeta电
位/mV
粒径/
nm
PEHA 0.26 97.2 +53.4 90
0.15 99.4 +53.3 120
0.10 99.8 +53.6 150
0.045 98.4 +53.7 180
HPEHA 0.26 2.96 0.08 90.3 +61.0 90
0.15 2.96 0.08 91.5 +60.2 120
0.10 2.96 0.08 89.2 +62.8 150
0.045 2.96 0.08 89.3 +62.4 180

图1

PEHA及HPEHA颗粒的合成示意图"

表2

有机硅乳液的乳化方案"

表面活性剂
质量分数/
%
颗粒
质量
分数/%
Pickering
颗粒乳液
质量/g
水的
质量/
g
XP-70/g 有机
硅质量/
g
HAc
质量/
g
7 64.06 2 28.57 0.6
14 62.06 4 28.57 0.6
21 58.06 8 28.57 0.6
7 5 4.46 59.60 2 28.57 0.6
7 10 8.92 55.14 2 28.57 0.6
7 15 13.38 50.68 2 28.57 0.6
7 30 26.76 37.30 2 28.57 0.6
7 45 40.14 23.92 2 28.57 0.6

表3

有机硅乳液的Zeta电位"

颗粒质量
分数/%
Zeta电位(PEHA/HPEHA)/mV
90 nm 120 nm 150 nm 180 nm
5 +38.4/+47.1 +42.1/+58.7 +44.3/+59.5 +58.7/+66.4
10 +43.4 /+58.2 +45.9/+60.0 +46.4/+61.5 +60.1/+68.8
15 +45.6 /+60.4 +44.0/+61.2 +59.3/+66.8 +62.6/+68.4
30 +46.5 /+62.6 +60.4/+67.8 +61.4/+65.8 +63.5/+67.5
45 +61.3 /+63.3 +62.2/+68.8 +62.8/+66.8 +63.7/+68.9

图2

未亲水改性的PEHA与亲水改性的HPEHA涂膜的红外光谱"

图3

未亲水改性的PEHA与亲水改性的HPEHA涂膜的水接触角"

图4

未亲水改性的PEHA与亲水改性的HPEHA涂膜的粒径分布及Zeta电位"

图5

表面活性剂独自稳定有机硅乳液的静置稳定性(静置90 d)"

图6

PEHA质量分数及粒径对有机硅乳液静置稳定性的影响 注:静置90 d;乳液中表面活性剂的质量分数为7%。"

图7

HPEHA质量分数及粒径对有机硅乳液静置稳定性的影响 注:静置90 d;乳液中表面活性剂的质量分数为7%。"

图8

颗粒质量分数及粒径对协同稳定的Pickering 有机硅乳液的粒径的影响"

表4

整理前后有机硅工作液的COD值(表面活性剂独自稳定)"

表面活性剂
质量分数/%
浸轧前后 COD值/(mg·L-1)
7 浸轧前 93 600
浸轧后 39 000
14 浸轧前 93 200
浸轧后 56 600
21 浸轧前 96 400
浸轧后 66 000

表5

整理前后有机硅工作液的COD值(表面活性剂与HPEHA协同稳定)"

HPEHA质量分数/% 浸轧前后 COD值/(mg·L-1)
5 浸轧前 97 000
浸轧后 35 600
10 浸轧前 93 200
浸轧后 36 800
15 浸轧前 94 800
浸轧后 36 000
20 浸轧前 92 600
浸轧后 34 800

图9

表面活性剂独自稳定与协同稳定的有机硅乳液整理后织物的摩擦因数 注:试样1为原织物;试样2~4为表面活性剂独自稳定的有机硅乳液整理后的织物,其中表面活性剂质量分数分别为7%、14%和21%;试样5为协同稳定的Pickering有机硅乳液整理后的织物,其中表面活性剂质量分数为7%,180 nm的HPEHA质量分数为5%。"

[1] OWEN M J. The surface activity of silicones: a short review[J]. Industrial & Engineering Chemistry Product Research and Development, 1980, 19(1): 97-103.
[2] CHENEY G D, VAN DYKE M E, CLARSON S J. Organosiloxane-cross-linked poly (2, 6-dimethyl-1, 4-phenylene oxide) network structures[J]. Journal of Inorganic and Organome-tallic Polymers, 1998, 8(2): 119-126.
[3] 徐成书, 吴梦婷, 任燕, 等. 线性聚醚嵌段氨基硅油的制备及其性能[J]. 纺织学报, 2019, 40(8): 89-94.
XU Chengshu, WU Mengting, REN Yan, et al. Preparation and properties of linear polyether-block amino silicone[J]. Journal of Textile Research, 2019, 40(8): 89-94.
[4] 余华东. 氨基硅油微乳废水电化学预处理技术研究[D]. 杭州: 浙江大学, 2012: 1-2.
YU Huadong. Study on aminosilicone microemulsions wastewater pretreatment by electrochemical techno-logy[D]. Hangzhou: Zhejiang University, 2012: 1-2.
[5] RAMSDEN W. Separation of solids in the surface-layers of solutions and 'suspensions'(observations on surface-me-mbranes, bubbles, emulsions, and mechanical coagulation):preliminary account[J]. Proceedings of the Royal Society of London, 1904, 72(477-486): 156-164.
doi: 10.1098/rspl.1903.0034
[6] PICKERING S U. Cxcvi: emulsions[J]. Journal of the Chemical Society: Transactions, 1907, 91: 2001-2021.
doi: 10.1039/CT9079102001
[7] 陶钰恬, 王晓波, 王子旭, 等. Pickering乳液的应用进展[J]. 广东化工, 2020, 47(12): 83-84.
TAO Yutian, WANG Xiaobo, WANG Zixu, et al. The prog-ress of application of pickering emulsion[J]. Guangdong Chemical Industry, 2020, 47(12): 83-84.
[8] 韩莹莹, 孙丽静, 钟毅, 等. 活性染料Pickering乳液非均相浸渍染色[J]. 纺织学报, 2017, 38(11): 79-83.
HAN Yingying, SUN Lijing, ZHONG Yi, et al. Heterogen-eous exhausting dyeing of cotton fabrics with reactive dye in Pickering emulsion[J]. Journal of Textile Research, 2017, 38(11): 79-83.
[9] 杨传玺, 王小宁, 杨诚. Pickering乳液稳定性研究进展[J]. 科技导报, 2018, 36(5): 70-76.
YANG Chuan-xi, WANG Xiaoning, YANG Cheng. Research progress on the stability of Pickering emul-sion[J]. Science & Techology Review, 2018, 36(5): 70-76.
[10] KAWAGUCHI M. Silicone oil emulsions stabilized by polymers and solid particles[J]. Advances in Colloid and Interface Science, 2016, 233: 186-199.
doi: S0001-8686(15)00090-1 pmid: 26170165
[11] 严欣宁. 有机硅整理织物改染问题的研究[J]. 染整技术, 1998, 20(3): 38-39.
YAN Xinning. Study on dyeing modification of organosilicon finished fabrics[J]. Textile Dyeing and Finishing Jo-urnal, 1998, 20(3): 38-39.
[12] KAWAZOE A, KAWAGUCHI M. Characterization of silicone oil emulsions stabilized by TiO2 suspensions preadsorbed SDS[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 392(1): 283-287.
doi: 10.1016/j.colsurfa.2011.10.005
[13] BINKS B P, LUMSDON SO. Influence of particle wettability on the type and stability of surfactant-free emulsions[J]. Langmuir, 2000, 16(23): 8622-8631.
doi: 10.1021/la000189s
[14] 袁婷婷, 沈玲, 王汉峰, 等. 可聚合乳化剂DNS-86对丙烯酸酯乳液稳定性的影响[J]. 粘接, 2010, 31(9): 63-66.
YUAN Tingting, SHEN Ling, WANG Hanfeng, et al. Effect of polymerizable emulsifier DNS-86 on the stability of Acrylate emulsion[J]. Adhesion, 2010, 31(9): 63-66.
[15] ARDITTY S, WHITBY C P, BINKS B P, et al. Some general features of limited coalescence in solid-stabilized emul-sions[J]. The European Physical Journal E, 2003, 11: 273-281.
doi: 10.1140/epje/i2003-10018-6
[16] CHEVALIER Y, BOLZINGER M A. Emulsions stabilized with solid nanoparticles: Pickering emul-sions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439: 23-34.
doi: 10.1016/j.colsurfa.2013.02.054
[17] SUN Z, YAN X, XIAO Y, et al. Pickering emulsions stabilized by colloidal surfactants: role of solid particles[J]. Particuology, 2022, 64: 153-163.
doi: 10.1016/j.partic.2021.06.004
[18] LEBDIOUA K, AIMABLE A, CERBELAUD M, et al. Influence of different surfactants on Pickering emulsions stabilized by submicronic silica particles[J]. Journal of Colloid and Interface Science, 2018, 520: 127-133.
doi: S0021-9797(18)30261-3 pmid: 29533852
[19] BINKS B P. Particles as surfactants: similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1/2): 21-41.
doi: 10.1016/S1359-0294(02)00008-0
[20] BINKS B P, LUMSDON S O. Pickering emulsions stabilized by monodisperse latex particles: effects of particle size[J]. Langmuir, 2001, 17(15): 4540-4547.
doi: 10.1021/la0103822
[21] BINKS B P, ISA L, TYOWUA A T. Direct measurement of contact angles of silica particles in relation to double inversion of Pickering emulsions[J]. Langmuir, 2013, 29(16): 4923-4927.
doi: 10.1021/la4006899 pmid: 23570266
[22] PRESTIDGE C A, BARNES T, SIMOVIC S. Polymer and particle adsorption at the PDMS droplet-water interface[J]. Advances in Colloid and Interface Science, 2004, 108: 105-118.
[1] 付政, 李敏, 何颖婷, 王春霞, 付少海. 纳米包覆分散染料的制备及其免水洗染色性能[J]. 纺织学报, 2022, 43(09): 129-136.
[2] 何颖婷, 李敏, 王瑞丰, 王春霞, 付少海. 涤纶织物的连续式轧染工艺[J]. 纺织学报, 2022, 43(03): 110-115.
[3] 王森, 陈英. 纳米TiO2稳定乳液的制备及其在微胶囊制备中的应用[J]. 纺织学报, 2020, 41(05): 105-111.
[4] 隋智慧, 伞景龙, 王旭, 常江, 吴学栋, 祖彬. 纳米ZnO/有机氟硅改性聚丙烯酸酯乳液的合成及应用[J]. 纺织学报, 2020, 41(04): 84-90.
[5] 张欢, 闫俊, 王晓武, 焦安东, 李红, 郑来久, 何婷婷. 低温等离子体在涤纶表面改性中的应用[J]. 纺织学报, 2019, 40(07): 103-107.
[6] 艾丽, 朱亚伟. 黏合剂的合成及其在分散蓝79微水印花中的应用[J]. 纺织学报, 2019, 40(06): 50-57.
[7] 刘菲, 李秋瑾, 巩继贤, 李政, 刘秀明, 张健飞. 层层自组装多糖微胶囊的制备及其缓释型纯棉织物修饰应用[J]. 纺织学报, 2019, 40(02): 114-118.
[8] 严燕钫 沈艳琴 武海良 张希文 姚一军. 玄武岩长丝表面低温等离子体处理及其浆丝集束性能[J]. 纺织学报, 2018, 39(12): 24-29.
[9] 向忠 刘杨 钱淼 吴震宇 胡旭东 周香琴. 纤维及其制品摩擦性能测试方法的研究进展[J]. 纺织学报, 2018, 39(11): 168-175.
[10] 韩莹莹 孙丽静 钟毅 徐红 毛志平 . 活性染料Pickering乳液非均相浸渍染色[J]. 纺织学报, 2017, 38(11): 79-83.
[11] 隋智慧 杨康乐 陈杰 赵欣. 含氟聚丙烯酸酯乳液整理剂的性能及其应用[J]. 纺织学报, 2016, 37(09): 100-105.
[12] 徐存强 冯志华 董腾中 王卫华 卞亚东. 气流引纬主喷嘴内气流速度与纬纱间摩擦因数的关系[J]. 纺织学报, 2013, 34(11): 147-0.
[13] 杨金库;董永春;郭瑾;刘春燕. 低温制备纳米TiO2溶胶整理棉织物对染料的降解[J]. 纺织学报, 2010, 31(7): 69-73.
[14] 安秋凤;付永山;许永静. 氟代聚丙烯酸酯乳液的制备及应用[J]. 纺织学报, 2008, 29(8): 81-84.
[15] 潘文艳;刘彦军;孙祥山;王伟. 乳液型含氟织物整理剂的性能及应用[J]. 纺织学报, 2007, 28(9): 80-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!