纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 152-160.doi: 10.13475/j.fzxb.20230101301

• 染整工程 • 上一篇    下一篇

抗熔滴型多元有机硅阻燃剂整理锦纶6织物的制备及其性能

范硕1,2(), 杨鹏1,3, 曾锦豪1,3, 宋潇迪1, 龚昱丹1, 肖遥1   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.江南大学 化学与材料工程学院,江苏 无锡 214122
    3.浙江理工大学嵊州创新研究院, 浙江 绍兴 312400
  • 收稿日期:2023-01-05 修回日期:2023-09-26 出版日期:2024-01-15 发布日期:2024-03-14
  • 作者简介:范硕(1992—),女,讲师,博士。主要研究方向为功能性纺织纤维制品。E-mail:fs2020@zstu.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金项目(52203074);中国博士后科学基金第73批面上资助项目(2023M731331)

Preparation of multi-component organic polysiloxane for flame retardancy of polyamide 6 fabrics with anti-dripping behavior

FAN Shuo1,2(), YANG Peng1,3, ZENG Jinhao1,3, SONG Xiaodi1, GONG Yudan1, XIAO Yao1   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou,Zhejiang 310018, China
    2. School of Chemical & Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    3. Shengzhou Research Institute of Zhejiang Sci-Tech University, Shaoxing, Zhejiang 312400, China
  • Received:2023-01-05 Revised:2023-09-26 Published:2024-01-15 Online:2024-03-14

摘要:

为提升锦纶6织物阻燃性能,基于水解缩合反应原理,开发设计多元协效抗熔滴型含磷席夫碱基有机硅阻燃剂,并采用浸渍法对锦纶6织物进行阻燃整理。借助红外光谱、热重分析仪、微型燃烧量热仪、极限氧指数仪、扫描电镜、拉曼光谱及热裂解气质联用仪等技术分别对阻燃锦纶6织物的化学结构、热稳定性、燃烧行为及其燃烧后炭化层与气相热解产物系统研究。结果表明:阻燃锦纶6织物的炭化能力及阻燃性能有效提升,其残炭率可增加至33.9%,且在火焰移开后可快速实现自熄,并未有熔滴产生;相较于锦纶6织物,阻燃锦纶6织物的热释放速率峰值(PHRR)及总释热量(THR)分别下降23.8%及20.4%,火灾安全性有效提升;经水洗20次后,阻燃锦纶6织物仍可实现自熄,其PHRR及THR值相较于锦纶6织物,仍分别下降了14.1%及13.6%。

关键词: 锦纶6织物, 阻燃整理, 阻燃剂, 功能纺织品, 多元有机硅, 抗熔滴

Abstract:

Objective Polyamide 6 fabrics are widely used in the fields of textiles and garment, aerospace, construction, and other industries by virtue of its lightweight, softness, high-strength, and abrasion resistance. However, polyamide 6 fabric is a combustible material, which is easy to ignite with fast burning speed, high heat release, and serious melt-dripping behavior, which greatly limits the application of polyamide 6 fabrics in some special regions. Thus, developing the flame-retardant polyamide 6 fabrics with good anti-dripping behavior becomes an important and meaningful task.

Method A multi-component synergistic flame retardant of organic polysiloxane containing phosphorus and Schiff base units was designed by hydrolysis-condensation reaction. Subsequently, flame-retardant polyamide 6 fabric was prepared by dipping method, and its chemical structure, thermal stability, combustion behavior, char residues, and pyrolysis volatiles were systematically investigated by fourier transform infrared spectro scop (FT-IR), thermo-gravimetric analysis (TGA), microscale combustion calorimetry (MCC), and Py-GC/MS test methods, respectively.

Results FT-IR and XPS results showed that polyamide 6 fabric was finished by the synergistic flame retardant successfully. According to TGA results, the degradation behavior of the finished polyamide 6 fabric changed to a two-stage degradation mode under the assistance of flame retardant. The initial degradation temperature (T5%) and the temperature at maximum weight loss rate (Tmax) of the finished polyamide 6 fabric decreased distinctly. On the contrary, the carbon yield (Yc) of the finished fabric approached 33.9%, which was largely higher than that of polyamide 6 fabric (3.6%). The increased carbon residue as a physical barrier was conducive to protecting the underlying fabric from heat and combustible gases. Significant differences were also observed between polyamide 6 fabric and the finished fabric from real-time combustion images. The polyamide 6 fabric was ignited quickly with fast fire spreading speed and serious melt-dripping behavior after being heated, and the fabric kept burning until the whole fabric was burnt up. In contrast, the finished fabric was self-extinguished rapidly after the fire was removed, and no melt droplet was produced during combustion. Meanwhile, the peak of heat release rate (PHRR) and the total heat release rate (THR) values of the finished fabric decreased by 23.8% and 20.4%, respectively, compared with the polyamide 6 fabric. Moreover, the PHRR and THR values of the finished fabric after washing were still lower than that of polyamide 6 fabric. During combustion of flame-retardant polyamide 6 fabric, a compact and dense carbon layer containing large quantities of small-sized SiO2 particles was generated. This generated char layer with lower intensity D-peak/intensity G-peak (ID/IG) value exhibited higher graphitization degree than the char residues of polyamide 6 fabric. The higher graphitization degree represents higher thermal stability of char layer, which is more beneficial to improve the flame retardancy of fabric. Main pyrolysis volatiles of the finished fabric were common with polyamide 6 fabric, including carbon dioxide (CO2), caprolactam, nitriles, and carbonyl fragments. Besides, some phosphorus-containing volatiles were also produced, and the proportion of caprolactam, the major combustible pyrolysis volatiles, was reduced in the pyrolysis process of the finishing fabric, reflecting flame retardant helped to retard the chain degradation reaction of polyamide 6 backbone.

Conclusion A multi-component organic polysiloxane flame retardant is synthesized and adopted to finish a polyamide 6 fabric. With the assistance of flame retardant, the carbonization capacity and fire safety, especially the anti-dripping behavior, of polyamide 6 fabric are improved significantly. In detail, a satisfactory reduction of 23.8% in PHRR value is achieved for the finished polyamide 6 fabric, and the melt-dripping behavior of the finished polyamide 6 fabric is suppressed effectively. This significantly improved flame retardancy of polyamide 6 fabric can be attributed to synergistic effects of the formation of stable carbon layer and the release of incombustible pyrolysis volatiles, which are originated from the cooperation of polysiloxane, phosphorus group, and Schiff base structure. Moreover, the finished fabric after washing still remains good carbonization capacity and fire safety, which is crucial to post-processing and application of fabric. The reported multi-component organic polysiloxane for preparing flame-retardant polyamide 6 fabric results in good anti-dripping behavior, which will help the formation of a versatile strategy for further developing functional polyamide 6 fabric and organic polysiloxane-based flame retardants for various applications.

Key words: polyamide 6 fabric, flame-retardant finishing, flame retardant, functional textile, multi-component organic polysiloxane, anti-dripping behavior

中图分类号: 

  • TS156

图1

含磷席夫碱基有机硅阻燃剂的合成过程"

图2

阻燃锦纶6织物的制备过程"

图3

阻燃剂与阻燃锦纶6织物的红外谱图及C1s XPS拟合谱图"

表1

阻燃锦纶6织物及其炭化层元素组成测试结果"

样品 元素含量/%
C N O P Si
织物 42.0 0.6 29.9 2.6 24.9
炭化层 58.1 5.1 19.5 3.1 14.3

图4

阻燃锦纶6织物的TGA及DTG曲线"

图5

样品的实时燃烧过程照片"

表2

织物燃烧测试结果"

样品 Tpeak/
PHRR/
(W·g-1)
THR/
(kJ·g-1)
LOI值/
%
现象
自熄 熔滴
锦纶6织物 466 998.1 27.9 20.5
阻燃锦纶6织物 405 759.9 22.0 25.1
水洗样 416 857.2 24.1 24.0

图6

织物的燃烧残留炭化层的SEM照片"

图7

织物燃烧残留炭化层的Raman谱图"

图8

阻燃锦纶6织物及其炭化层的XPS相关谱图"

图9

锦纶6织物及阻燃锦纶6织物的总离子流色谱图"

表3

锦纶6织物与阻燃锦纶6织物在600 ℃时的主要热解气相产物"

织物 时间/
min
面积比/
%
气相产物
化学式 名称
锦纶6
织物
1.09 14.36 CO2 二氧化碳
3.03 0.47 C5H5N 吡啶
4.12 1.55 C5H8O 环戊酮
6.51 2.09 C6H9N 5-氰基-1-戊烯
7.00 1.03 C6H11N 正己腈
14.72 39.11 C6H11NO 己内酰胺
18.35 2.13 C5H14N2 N-异丙基乙二胺
阻燃
锦纶6
织物
1.09 4.28 CO2 二氧化碳
6.56 3.21 C6H9N 5-氰基-1-戊烯
7.03 1.41 C6H11N 正己腈
13.94 0.15 C9H11N 5-氨基茚烷
14.35 15.72 C6H11NO 己内酰胺
16.14 8.87 C12H10 2-乙烯基萘
17.91 14.14 C12H10O 邻羟基联苯
24.64 1.93 C12H8O2P DOPO
[1] 金文杰, 程献伟, 关晋平, 等. 聚酰胺6织物的磺胺阻燃抗熔滴整理[J]. 纺织学报, 2022, 43(2): 171- 175.
JIN Wenjie, CHENG Xianwei, GUAN Jinping, et al. Sulfanilamide finishing to polyamide 6 fabrics for flame retardant and anti-dripping performance[J]. Journal of Textile Research, 2022, 43(2):171-175.
[2] FENG Xiaming, WANG Xin, CAI Wei, et al. Integrated effect of supramolecular self-assembled sandwich-like melamine cyanurate/MoS2 hybrid sheets on reducing fire hazards of polyamide 6 composites[J]. Journal of Hazardous Materials, 2016, 320:252-264.
doi: S0304-3894(16)30733-6 pmid: 27544738
[3] 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42 (7): 11-18.
LIU Ke, CHEN Shuang, XIAO Ru. Preparation and properties of synergistic flame retardant copolyamide 6 fiber with phosphaphenanthrene group[J]. Journal of Textile Research, 2021, 42 (7):11-18.
[4] DAHIYA J B, MULLER-HAGEDORN M, BOCKHORN H, et al. Synthesis and thermal behaviour of polyamide 6/bentonite/ammonium polyphosphate composites[J]. Polymer Degradation and Stability, 2008, 93(11): 2038 -2041.
doi: 10.1016/j.polymdegradstab.2008.02.016
[5] CHEN Yinghong, WANG Qi. Preparation, properties and characterizations of halogen-free nitrogen-phosphorous flame-retarded glass fiber reinforced polyamide 6 composite[J]. Polymer Degradation & Stability, 2006, 91 (9):2003-2013.
[6] FEI Guoxia, WANG Qi, LIU Yuan. Synthesis of novolac-based char former: silicon-containing phenolic resin and its synergistic action with magnesium hydroxide in polyamide-6[J]. Fire & Materials, 2010, 34(8):407-419.
[7] ALAEE Mehran, ARIAS Pedro, SJODIN Andreas, et al. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release[J]. Environment International, 2004, 29(6):683- 689.
doi: 10.1016/S0160-4120(03)00121-1
[8] COVACI Adrian, HARRAD Stuart, ABDALLAH Mohamed A E, et al. Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour[J]. Environment International, 2011, 37(2): 532 -556.
doi: 10.1016/j.envint.2010.11.007 pmid: 21168217
[9] SEHIC Alisa, TOMSIC Brigita, JERMAN Ivan, et al. Synergistic inhibitory action of P-and Si-containing precursors in sol-gel coatings on the thermal degradation of polyamide 6[J]. Polymer Degradation and Stability, 2016, 128:245-252.
doi: 10.1016/j.polymdegradstab.2016.03.026
[10] 李宝钗, 李小科, 陈国文. 有机硅阻燃剂在聚烯烃应用中的研究进展[J]. 高分子材料科学与工程, 2020, 36(9):157-164.
LI Baochai, LI Xiaoke, CHEN Guowen. Research progress of silicone flame retardants in polyolefin applications[J]. Polymer Materials Science and Engineering, 2020, 36(9):157-164.
[11] FAN Shuo, PENG Bo, YUAN Ruchao, et al. A novel Schiff base-containing branched polysiloxane as a self-crosslinking flame retardant for PA6 with low heat release and excellent anti-dripping performance[J]. Composites Part B: Engineering, 2020, 183(15): 107684.
doi: 10.1016/j.compositesb.2019.107684
[12] SEHIC Alisa, VASILJEVIC Jelena, JORDANOV Igor, et al. Influence of N-, P- and Si-based flame retardant mixtures on flammability, thermal behavior and mechanical properties of PA6 composite fibers[J]. Fibers and Polymers, 2018, 19(6):1194-1206.
doi: 10.1007/s12221-018-8059-5
[13] LI Jialiang, WANG Hongyu, LI Shichao. A novel phosphorus-silicon containing epoxy resin with enhanced thermal stability, flame retardancy and mechanical properties[J]. Polymer Degradation and Stability, 2019, 164:36-45.
doi: 10.1016/j.polymdegradstab.2019.03.020
[14] 顾海洋, 王冬, 张丽平, 等. 制革污泥蛋白质基棉织物阻燃剂的合成及棉织物阻燃整理[J]. 功能材料, 2022, 53(1):1196-1203.
doi: 10.3969/j.issn.1001-9731.2022.01.031
GU Haiyang, WANG Dong, ZHANG Liping, et al. Synthesis of tannery sludge protein based flame retardant and flame retardant finishing of cotton fabric[J]. Functional Materials, 2022, 53(1):1196-1203.
[15] WANG Yiliang, YANG Xiaomei, PENG Hui, et al. Layer-by-layer assembly of multifunctional flame retardant based on brucite, 3-aminopropyltriethoxy silane, and alginate and its applications in ethylene-vinyl acetate resin[J]. Acs Applied Materials & Interfaces, 2016, 8(15):9925-9935.
[16] QIU Yong, QIAN Lijun, CHEN Yajun, et al. Improving the fracture toughness and flame retardant properties of epoxy thermosets by phosphaphenanthrene/siloxane cluster-like molecules with multiple reactive groups[J]. Composites Part B: Engineering, 2019. DOI: 10.1016/j.compositesb.2019.107481.
[17] SHI Xingxing, PENG Xiangfang, ZHU Jingyi, et al. Synthesis of DOPO-HQ-functionalized graphene oxide as a novel and efficient flame retardant and its application on polylactic acid: thermal property, flame retardancy, and mechanical performance[J]. Journal of Colloid & Interface Science, 2018, 524:267-278.
[18] KASHIWAGI Takashi, DU Fangming, DOUGLAS Jack F, et al. Nanoparticle networks reduce the flammability of polymer nanocomposites[J]. Nature Materials, 2005, 4(12):928-933.
pmid: 16267575
[19] HILT F, GHERARDI N, DUDAY D, et al. Efficient flame retardant thin films synthesized by atmospheric pressure PECVD through the high Co-deposition rate of hexamethyldisiloxane and triethylphosphate on polycarbonate andpolyamide-6 substrates[J]. Acs Applied Materials & Interfaces 2016, 8 (19):12422-12433.
[20] ZHAO Wei, ZHAO Haibo, CHENG Jinbo, et al. A green, durable and effective flame-retardant coating for expandable polystyrene foams[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2022.135807.
[21] CAI Tongmin, WANG Junling, ZHANG Chuanhui, et al. Halogen and halogen-free flame retarded biologically-based polyamide with markedly suppressed smoke and toxic gases releases[J]. Composites Part B: Engineering, 2020. DOI: 10.1016/j.compositesb.2019.107737.
[22] ZHAO Dan, WANG Juan, WANG Xiuli, et al. Highly thermostable and durably flame-retardant unsaturated polyester modified by a novel polymeric flame retardant containing Schiff base and spirocyclic structures[J]. Chemical Engineering Journal, 2018, 344:419-430.
doi: 10.1016/j.cej.2018.03.102
[23] COLOVIC Marija, VASILJEVIC Jelena, STIRN Ziga, et al. New sustainable flame retardant DOPO-NH- functionalized polyamide 6 and filament yarn[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2021.130760.
[1] 陈顺, 钱坤, 梁付巍, 郭文文. 丁香酚基复合涂层阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(12): 115-122.
[2] 张文琪, 李莉莉, 胡泽旭, 魏丽菲, 相恒学, 朱美芳. 基于均三嗪环结构的聚己内酰胺6复合树脂制备及其抗熔滴阻燃特性[J]. 纺织学报, 2023, 44(11): 1-8.
[3] 肖云超, 杨雅茹, 郭健鑫, 王童谣, 田强. 高温自交联抗熔滴阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2023, 44(11): 151-159.
[4] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[5] 王予涛, 丛洪莲, 顾洪阳. 纬编成形护膝结构设计及其热湿舒适性[J]. 纺织学报, 2023, 44(10): 68-74.
[6] 尚小愉, 朱坚, 王滢, 张先明, 陈文兴. 侧基含磷阻燃共聚酯的制备及其固相增黏反应[J]. 纺织学报, 2023, 44(07): 1-9.
[7] 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167.
[8] 杨海富, 罗丽娟, 师建军, 马晓光, 郑振荣. 阻燃防水多功能涤纶篷布的制备及其性能[J]. 纺织学报, 2023, 44(06): 168-174.
[9] 谭启飞, 陈梦莹, 马晟晟, 孙明祥, 代春鹏, 罗仑亭, 陈益人. 湖羊毛非织造阻燃吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(05): 147-154.
[10] 葛佳慧, 毛志平, 张琳萍, 钟毅, 隋晓锋, 徐红. 基于二维碳化钛材料修饰的功能棉针织物制备及其性能[J]. 纺织学报, 2023, 44(04): 132-138.
[11] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[12] 赵伦玉, 隋晓锋, 毛志平, 李卫东, 冯雪凌. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189.
[13] 李宝洁, 朱元昭, 钟毅, 徐红, 毛志平. 聚磷腈改性沸石咪唑酯骨架材料的制备及其在聚酯阻燃中的应用[J]. 纺织学报, 2022, 43(11): 104-112.
[14] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[15] 陈珺娴, 李伟萍, 付琪轩, 冯新星, 张华. 芳纶/阻燃粘胶/阻燃锦纶混纺织物制备及其性能[J]. 纺织学报, 2022, 43(09): 107-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!