纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 176-184.doi: 10.13475/j.fzxb.20221104001

• 服装工程 • 上一篇    下一篇

文胸罩杯透湿率测定新方法

王兆芳1, 张辉1,2(), 丁波1, 张淼3   

  1. 1.北京服装学院 服装艺术与工程学院, 北京 100020
    2.北服·爱慕内衣研究院, 北京 100102
    3.爱慕股份有限公司, 北京 100102
  • 收稿日期:2022-11-14 修回日期:2023-09-18 出版日期:2024-01-15 发布日期:2024-03-14
  • 通讯作者: 张辉(1966—),男,教授,博士。主要研究方向为服装工效学。E-mail:gdcad@126.com
  • 作者简介:王兆芳(1998—),女,硕士生。主要研究方向为服装舒适性与功能服装。
  • 基金资助:
    北京服装学院爱慕内衣研究院研发项目(HXKY05190336)

Novel method for determining water vapor permeability of bra cups

WANG Zhaofang1, ZHANG Hui1,2(), DING Bo1, ZHANG Miao3   

  1. 1. College of Fashion Arts and Engineering, Beijing Institute of Fashion Technology, Beijing 100020, China
    2. BIFT·Aimer Underwear Research Institute, Beijing 100102, China
    3. Aimer Co., Ltd., Beijing 100102, China
  • Received:2022-11-14 Revised:2023-09-18 Published:2024-01-15 Online:2024-03-14

摘要:

针对现行的织物透湿率测试标准和方法较难测定曲面织物和厚度不均匀织物的局限,导致文胸产品缺乏系统的透湿性能测定方法的问题,本文提出一种新型文胸罩杯透湿率的测定方法胸部模型法。首先展开理论探索,获得纯水蒸发率与空气层厚度、倾斜角度、介质种类的关系;再进行算法程序设计和交互页面设计;最后进行设备稳定性测试和与正杯法透湿率测试方法对比实验,完成其综合可行性验证。结果表明:由该新型文胸罩杯透湿率测定方法测定出的不同罩杯透湿率一方面能够表征其透湿性能差异,另一方面变异系数较小,设备稳定性高;并且该方法得出的透湿率与正杯法测出的透湿率存在较高的一致性。综上得出新型文胸罩杯透湿率测定方法是一种理想的测定文胸产品透湿性能方法。

关键词: 透湿率, 文胸, 文胸透湿率测评, 热湿舒适性, 透湿性能

Abstract:

Objective The current testing standards and methods for fabric water vapor permeability are only applicable to sheet fabrics withuniform thickness and flatness, and cannot measure fabrics with curved surfaces and fabrics with uneven thickness, which leads to the lack of systematic water vapor permeability measurement methods for bra products.

Method This paper proposes a method for measuring the water vapor permeability of bra cups to solve the above problems. The main body of the equipment adopts the idea of "differential method", and consists of multiple slender water vapor permeable columns with a ground area of 1 cm×1 cm that continuously change in inclination angles to form a breast model with an arc-shaped evaporation surface. The innovations of the equipment are as follows: 1. the evaporation surface is designed to fit the cup radian more closely; 2. the sodium polyacrylate solution with a mass ratio of mPNNamH2O=1∶500 is used instead of the pure water, which approximately eliminates the water vapor resistance of the air layer above the evaporating liquid surface. According to the relationship between the evaporation rate of pure water and the thickness of the air layer, the relationship between the evaporation rate of pure water and the type of medium, the relationship between different concentrations of sodium polyacrylate solution and the obtained the corresponding curve fitting equations were adopted to calculate the corresponding evaporation coefficients Kair, Kangle and KPNNNa. Then algorithm and program design were carried out and the Visual Basic programming language was adopted to write the model method cup water vapor permeability calculation program. The program realizes the selection of water vapor permeability area, the input of independent variables such as mass and time, and the calculation of water vapor permeability. During the measurement, under the environmental conditions of temperature of 25 ℃, humidity of 30%, and wind speed of 0.4 m/s, the water vapor permeable column covered by the cup sample with approximately mPNNNamH2O=1∶500 sodium polyacrylate aqueous solution (keep the air layer height above the liquid level at 2 mm), the cup sample was fixed on the model with gauze to evaporate 6 h, mass the initial mass G0, evaporation end mass G1, evaporation time and evaporation area distribution were reoorded, and then input them into the user interface, and the permeability was calculate of by the program. The water vapor permeability of 4 cup samples with different air-ventilation hole areas was and compared the waster vapor permeability of fabrics measured by the upright cup method.

Results The results show that a strong correlation (R>0.6) exists between the water vapor permeability values of different cups measured by the model method and the value of the hole quantity (R>0.6), indicating that the measurement results of the model method proposed can characterize the differences in the water vapor permeability of cups with different hole areas. On the one hand, the cups of each type were measured three times, and the CV values obtained were all less than 6%. It can be seen that the coefficient of variation of the data measured by the model method is small, and the stability of the equipment is high. And the water vapor permeability of cups made of five kinds of fabrics plain cotton, flax, silk, wool and canvas cotton obtained by this method has a high consistency with the water vapor permeability of the corresponding five fabrics measured by the upright cup method (R>0.6).

Conclusion The water vapor permeability measured by the model method can be adopted to characterize the water vapor permeability of bra cups and fabrics. This test method solves the problem that the water vapor permeability of bra products cannot be measured and characterized at present, and can provide method support for the evaluation of the water vapor permeability of bra products for underwear companies, facilitating companies research on the heat and humidity comfort of bras. Enterprises can find out the problems and deficiencies of research and development products through measurement, and reduce the flow of bras that do not meet the water vapor permeability requirements into the market. For consumers,by marking the water vapor permeability performance data of bra products on product details, consumers can be provided with more convincing and objective consumption guidance.

Key words: water vapor permeability, bra, water vapor permeability evaluation of bra, thermal and wet comfort, facilitating permeability

中图分类号: 

  • TS941.17

图1

正杯法示意图"

图2

正杯法中湿阻示意图"

图3

胸部模型示意图"

表1

空气层厚度与蒸发率"

空气层厚度/
cm
蒸发率/(g·(h·m2)-1 )
均值 标准差
0.20 99.82 2.29
0.30 94.32 3.51
0.60 84.37 2.37
1.00 81.89 3.33
2.00 79.47 2.08
3.00 78.49 3.35
4.00 73.71 2.17
4.30 72.47 3.28
4.60 72.57 3.01
5.00 71.52 1.80
5.30 69.47 1.54
5.60 68.93 2.08

图4

空气层厚度对应蒸发率的常规残差图"

图5

不同倾斜角透湿杯示意图"

图6

倾斜角度对蒸发率的影响"

图7

倾斜角度对应蒸发率的常规残差图"

图8

介质种类对纯水蒸发的影响"

表2

聚丙烯酸钠溶液浓度与蒸发率关系"

mPNNNa m H 2 O 现象 蒸发率/
(g·(h·m2)-1)
1∶100 凝胶状固体,水完全吸收,
倾斜无流动
59.40
1∶200 凝胶状固体,水完全吸收,
倾斜无流动
62.52
1∶300 凝胶状固体,水完全吸收,
倾斜无流动
63.66
1∶400 凝胶状固体,接近完全吸收,
倾斜轻微流动
66.48
1∶500 凝胶状固体,细微渗水,
倾斜有流动感
67.32
1∶600 凝胶状固体,轻微渗水,
倾斜有明显流动感
64.02
1∶700 凝胶状固体,些许渗水,
倾斜流动感较强
66.66
1∶800 水固交融,较多水未吸收,
流动感接近纯水
68.82
1∶900 明显水状,其特性接近蒸馏水 70.32
纯水 蒸馏水,无色透明液体 74.52

表3

罩杯区域透湿柱角度"

倾斜角度/
(°)
透湿柱角度/(°)
A B C D E F G H I J K
1 4.8 18.2 23.5 31.0 38.1 38.7 43.6 45.6 50.7 51.8 46.9
2 17.8 24.3 33.4 35.1 34.1 33.4 41.2 47.4 48.8 55.0 56.4
3 21.8 32.9 33.7 31.5 30.6 31.8 34.9 41.8 51.5 58.5 64.3
4 31.4 38.8 34.4 29.5 28.3 30.2 36.6 41.1 49.8 58.6 65.7
5 35.9 37.2 39.1 25.3 21.8 23.2 29.5 37.3 47.9 57.7 66.8
6 37.2 44.4 33.6 21.1 15.3 16.1 22.4 32.8 46.1 57.3 68.5
7 40.6 40.1 28.4 17.3 7.0 2.3 10.8 29.1 43.7 56.3 69.3
8 38.1 40.4 27.3 16.2 0.5 5.0 8.9 29.1 41.8 55.8 69.3
9 31.5 44.0 33.8 21.1 10.8 13.7 21.0 30.5 45.0 61.0
10 18.5 37.5 39.2 30.2 27.7 26.5 28.5 39.6 54.0 70.0
11 4.6 21.4 38.9 40.5 37.0 35.8 42.8 52.0 63.5
12 1.70 15.6 38.9 49.5 49.9 56.7 58.6
13 7.10 11.6 23.9 37.0 45.1

图9

程序流程图"

图10

文胸透湿率测定系统用户界面"

图11

文胸罩杯透湿率测定示意图"

表4

罩杯试样规格"

编号 组成
成分
孔洞
直径/
cm
孔洞
数量
孔洞
面积/
cm2
边缘厚
度/mm
中心
厚度/
mm
罩杯a 聚醚聚氨酯 2.5 43 211.07 0.8 5
罩杯b 聚醚聚氨酯 3.0 29 204.99 0.8 5
罩杯c 聚醚聚氨酯 3.0 23 162.58 0.8 5
罩杯d 聚醚聚氨酯 0 0.8 5

图12

罩杯试样示意图"

表5

罩杯透湿率测试结果"

编号 透湿率/(g·(h·m2)-1) 标准差/(g·(h·m2)-1) CV值/%
罩杯a 60.78 3.16 5.20
罩杯b 57.88 0.58 1.01
罩杯c 56.70 2.35 4.14
罩杯d 55.70 1.03 1.85

表6

面料试样规格"

编号 组成成分 织物组织 厚度/
mm
面密度/
(g·m-2)
1 100%棉 平纹 0.180 88.8
2 100%丝 平纹 0.232 125.5
3 100%麻 平纹 0.298 202.8
4 100%羊毛 平纹 0.521 228.2
5 100%棉 斜纹 0.412 268.5

图13

模型法和正杯法透湿率结果对比"

[1] 郝存英. 运动文胸的热湿舒适性研究与设计[D]. 苏州: 苏州大学, 2019:11-13.
HAO Cunying. Thermal comfort design of sports bras[D]. Suzhou: Soochow University, 2019:11-13.
[2] LEUNG K, SHIN K, HAN F, et al. Ergonomic mastectomy bra design: effect on core body temperature and thermal comfort performance[J]. Applied Ergonomics, 2021.DOI: 10.1016/j.apergo.2020.103249.
[3] LIU X, JI X, OCRAN F M, et al. Effects of ventilation design on thermal comfort performance and breast displacement for sports bras[J]. Textile Research Journal, 2023, 93(3/4): 519-537.
doi: 10.1177/00405175221122508
[4] 张辉, 黎焰. 服装工效学[M]. 北京: 中国纺织出版社, 2021:42-46.
ZHANG Hui, LI Yan. Clothing Ergonomics[M]. Beijing: China Textile & Apparel Press, 2021:42-46.
[5] 颜奥林. 纺织品热湿舒适性能测试及综合评价[D]. 无锡: 江南大学, 2020:15-16.
YAN Aolin. Testing and comprehensive evaluationof textile Thermal and wet comfort performance[D]. Wuxi: Jiangnan University, 2020:15-16.
[6] 蒋培清, 严灏景, 唐世君, 等. 织物动态热湿传递性能测试仪的研制.[J]针织工业, 2004(4) :138-142.
JIANG Peiqing, YAN Haojing, Tang Shijun et al. Development of dynamic heat and moisture transfer performance tester for fabrics[J]. Knitting Industries, 2004(4):138-142.
[7] 黄建华. 织物透湿性测试新方法[J]. 纺织学报, 2007, 28(10):30-33.
HUANG Jianhua. New method for testing the moi sture permeability of fabrics[J]. Journal of Textile Research, 2007, 28(10):30-33.
[8] 张君. 圆筒式织物热湿阻测试仪的研制及测量[D]. 上海: 东华大学, 2021:6-9.
ZHANG Jun. Development and measurement of thermal and moisture resistance tester to fabric in cylin deical shape[D]. Shanghai: Donghua University, 2021:6-9.
[9] GAO H, DEATON A S, FANG X, et al. Effects of environmental temperature and humidity on evaporative heat loss through firefighter suit materials made with semi-permeable and microporous moisture barriers[J]. Textile Research Journal, 2022, 92(1/2): 219-231.
doi: 10.1177/00405175211026537
[10] FUNG F, GAO C, HES L, et al. Water vapor resistance measured on sweating thermal manikin and Permetest skin model in the vertical orientation[J]. Communications in Development and Assembling of Textile Products, 2020, 1(1): 65-73. 2020.
doi: 10.25367/cdatp.2020.1
[11] 张丽丽. 出汗假人在服装热湿舒适性中的测试与评价[J]. 中国个体防护装备, 2014(5):44-49.
ZHANG Lili. Test and evaluation of sweating manikin in clothing heat-moisture comfort[J]. China Personal Protective Equipment, 2014(5):44-49.
[12] 谌玉红, 姜志华, 倪济云, 等. 出汗假人及其应用[J]. 天津工业大学学报, 2004(5): 102-104.
CHEN Yuhong, JIANG Zhihua, Ni Jiyun, et al. Sweating manikin and its application[J]. Journal of Tiangong University, 2004(5): 102-104.
[13] LI J, BARKER R L, DEATON A S. Evaluating the effects of material component and design feature on heat transfer in firefighter turnout clothing by a sweating manikin[J]. Textile Research Journal, 2007, 77(2): 59-66.
doi: 10.1177/0040517507078029
[14] 陈益松, 张渭源, 谢广辉, 等. 舱外航天服试验用暖体假人的研制与性能分析[J]. 东华大学学报(自然科学版), 2013, 39(3): 306-310.
CHEN Yisong, ZHANG Weiyuan, XIE Guanghui, et al. A thermal manikin developed for measuring thespace suit and its properties analysis[J]. Journal of Donghua University(Natural Science), 2013, 39(3): 306-310.
[15] RASHA Mustapha, ASSAAD Zoughaib, NESREEN Ghaddar, et al. Modified upright cup method for testing water vapor permeability in porous membranes[J]. Energy, 2020, 195(01):31-33.
[16] 蒋培清. 空气层对织物动态热湿传递性能的影响[J]. 纺织学报, 2005, 26(1) :10-12.
JIANG Peiqing, YAN Haojing, et al. Influence of air layer on the properties of fabric dynamic heat-moisture transfer[J]. Journal of Textile Research, 2005, 26(1):10-12.
[1] 盛欣洋, 陈晓娜, 卢娅娅, 李艳梅, 孙光武. 面料拉伸性能与运动文胸防震功能的定量关系[J]. 纺织学报, 2024, 45(01): 161-167.
[2] 姚晨曦, 万爱兰. 聚对苯二甲酸丁二醇酯/聚对苯二甲酸乙二醇酯纬编运动T恤面料的热湿舒适性[J]. 纺织学报, 2024, 45(01): 90-98.
[3] 王兆芳, 丁波, 张辉, 陈思璘. 青年女性胸部出汗分布和出汗率的测定[J]. 纺织学报, 2023, 44(12): 145-152.
[4] 王予涛, 丛洪莲, 顾洪阳. 纬编成形护膝结构设计及其热湿舒适性[J]. 纺织学报, 2023, 44(10): 68-74.
[5] 赵辰, 王敏, 李俊. 个体降温服优化设计对其降温效果影响的研究进展[J]. 纺织学报, 2023, 44(09): 243-250.
[6] 丁雪婷, 王建萍, 潘婷, 姚晓凤, 袁鲁宁. 仿蜻蜓翅膀结构的冬季针织面料研发及其性能[J]. 纺织学报, 2023, 44(09): 75-83.
[7] 陈佳慧, 梅涛, 赵青华, 尤海宁, 王雯雯, 王栋. 热湿舒适性智能织物的研究进展[J]. 纺织学报, 2023, 44(01): 30-37.
[8] 牛梦雨, 潘姝雯, 戴宏钦, 吕凯敏. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(07): 144-150.
[9] 江燕婷, 严庆帅, 辛斌杰, 高琮, 施楣梧. 纺织品单向导水性能测试方法分析[J]. 纺织学报, 2021, 42(05): 51-58.
[10] 王莉, 张冰洁, 王建萍, 刘莉, 杨雅岚, 姚晓凤, 李倩文, 卢悠. 基于仿生学的冬季针织运动面料开发与性能评价[J]. 纺织学报, 2021, 42(05): 66-72.
[11] 杨阳, 俞欣, 章为敬, 张佩华. 针织面料凉爽性能的评价方法及其预测模型[J]. 纺织学报, 2021, 42(03): 95-101.
[12] 孙岑文捷, 倪军, 张昭华, 董婉婷. 针织运动服的通风设计与热湿舒适性评价[J]. 纺织学报, 2020, 41(11): 122-127.
[13] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[14] 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94.
[15] 雷敏, 李毓陵, 马颜雪, 程隆棣, 周峰. 织物散湿性能的研究进展[J]. 纺织学报, 2020, 41(07): 174-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!