纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 230-239.doi: 10.13475/j.fzxb.20221102502

• 综合述评 • 上一篇    下一篇

可吸收手术缝合线研究进展

杨智超, 刘淑强, 吴改红, 贾潞(), 张曼, 李甫, 李慧敏   

  1. 太原理工大学 轻纺工程学院, 山西 太原 030024
  • 收稿日期:2022-12-01 修回日期:2023-11-10 出版日期:2024-01-15 发布日期:2024-03-14
  • 通讯作者: 贾潞(1990—),女,讲师。主要研究方向为纺织品的功能化及智能化应用。E-mail: jialu@tyut.edu.cn
  • 作者简介:杨智超(1998—),男,硕士生。主要研究方向为生物医用材料。
  • 基金资助:
    山西省基础研究计划项目(20210302123114);山西省基础研究计划项目(202203021211146);山西省科技成果转化引导专项项目(202104021301053);山西省社科联2021年度重点课题(SSKLZDKT2021025);山西省高等学校大学生创新创业训练计划项目(20220125);山西省基础研究计划(青年)(20210302124684)

Research progress in absorbable surgical sutures

YANG Zhichao, LIU Shuqiang, WU Gaihong, JIA Lu(), ZHANG Man, LI Fu, LI Huimin   

  1. College of Textile Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
  • Received:2022-12-01 Revised:2023-11-10 Published:2024-01-15 Online:2024-03-14

摘要:

可吸收手术缝合线是当今国际生物医用纺织领域的研究热点之一。为了掌握可吸收手术缝合线的创新方向以及临床和产业化需求提升我国可吸收手术缝合线的自主知识产权;首先介绍了可吸收缝合线的发展历程以及性能要求;其次列举了羊肠线、胶原线、甲壳质和海藻酸盐4种天然材料在天然可吸收缝合线方面的应用并总结分析最新国内外相关研究;然后综述了聚乳酸、聚乙醇酸、聚己内酯和聚乙烯醇4类合成高分子材料在可吸收缝合线方面的应用并总结分析国内外最新相关研究;系统对比了各种制备原料开发可吸收手术缝合线的优缺点,并侧重分析了可吸收手术缝合线的力学性能、降解性能以及附加抗菌性能3个重要指标。分析认为:目前市面上的可吸收手术缝合线仍以国外进口为主导,我国对于可吸收手术缝合线的开发仍处于实验室阶段,较少能够投入市场以及临床应用,另外,对用天然材料开发的可吸收手术缝合线研究甚少。同时,提出各类材料作为可吸收手术缝合线的优缺点,为新型可吸收手术缝合线的开发提供参考。

关键词: 生物医用纺织品, 可吸收手术缝合线, 天然材料, 合成高分子材料, 降解性能, 抗菌性能

Abstract:

Significance Biomedical textiles are one of the most innovative and technologically advanced research fields in the textile industry today. Surgical sutures are one of the most used medical devices in clinical surgery, and research and development of sutures have been active worldwide. As a new generation of surgical sutures, absorbable surgical sutures are the ″darling″ of the medical community, with extremely important applications in obstetrics and gynecology, surgery, otolaryngology, ophthalmology, dentistry, and so on. Absorbable surgical sutures have become the first choice of surgeons in surgical procedures by virtue of their self-degrading, non-removable and less painful properties, and patients using absorbable surgical sutures are benefitted from having minimal visible scarring on the skin after healing, enhancing patient satisfaction. Although the development of absorbable surgical sutures is now at a relatively mature stage, many high value-added absorbable surgical sutures with excellent functionality are still in the laboratory stage and cannot be industrially produced and marketed for clinical applications. Therefore, this paper focuses on the analysis of various raw materials for preparation of absorbable surgical sutures based on the latest relevant research literature to systematically summarize the current research status of absorbable surgical sutures, promote the innovative development of absorbable surgical sutures and enhance the industrial production of absorbable surgical sutures.

Progress The development of absorbable sutures and their performance requirements, the history of the development of absorbable surgical sutures from ancient times to the present day are introduced first. The development of the raw materials for their preparation from single to diversified are elaborated. The specific development history is shown, and the mainstream products on the market today are shown. In addition, the properties of absorbable surgical sutures, such as good biocompatibility and good knot strength, as well as the smoothness of the suture surface, are systematically reviewed. The four natural materials used for natural absorbable suture applications, namely catgut, collagen, chitin and alginate, are scutinised and the latest research in this area is summarized and analyzed. Four types of synthetic polymers, i.e., polylactic acid, polyglycolic acid, polycaprolactone and polyvinyl alcohol, are reviewed for making absorbable sutures and the latest research is summarized and analyzed. The advantages and disadvantages of developing absorbable surgical sutures from various materials are systematically studied and compared, and the analysis focused on three important indicators which are the mechanical properties, degradation properties and additional antibacterial properties of absorbable sutures. The overview of antimicrobial immune novel absorbable surgical sutures is also summarized the relevant mechanisms of action is described. Finally, the article concludes with an analysis and summary of the problems of today's absorbable surgical sutures and the trends of future development.

Conclusion and Prospect The paper analyzes the current status of research on surgical sutures in recent years, starting from the materials used for the preparation of absorbable sutures. The technology for the development of absorbable surgical sutures is becoming more mature, but some problems still need research attention. 1) Relatively little research has been conducted on natural type of absorbable surgical sutures, and the initial catgut have disadvantages such as poor mechanical properties and tendency to trigger tissue reactions, which require further modification of the material. Chitin is commonly used as a functional coating finishing material to impart antimicrobial properties in recent years due to its excellent broad-spectrum antibacterial properties, but little research has been conducted on the preparation of sutures using chitin fibers for development. 2) The development of synthetic polymeric materials has provided more possibilities for the preparation of new absorbable surgical sutures. However, the degradation cycles of various materials are different, resulting in a mismatch between wound healing time and suture degradation time, which affects wound healing. Therefore, the controlled degradation of synthetic polymers is particularly important, so the research of absorbable sutures made of synthetic polymers should be enhanced in terms of the regulation of degradation properties. 3) Wound infection is a persistent problem in surgical procedures, and therefore the development of absorbable surgical sutures with excellent antimicrobial properties is the main theme in suture preparation. Tthe selection of suitable antimicrobial agents, the enhancement of antimicrobial agent loading fastness, and the long-lasting and stable action of antimicrobial agents are issues requiring future research attention.

Key words: biomedical textile, absorbable surgical suture, natural material, synthetic polymer, degradation performance, antibacterial property

中图分类号: 

  • TS102.5

表1

可吸收缝合线材料的发展历程"

时间 材料
公元前1800年~1500年 肠线[8?-10]
19世纪末 消毒的肠线[8?-10]
20世纪60年代 可控制体内吸收速率的胶原线[11-12]
20世纪70年代 甲壳素可吸收缝合线[8?-10]
19世纪90年代末 海藻酸盐纤维[11]
20世纪60年代 PGA可吸收缝合线[11-12]
20世纪60年代末 PPDO缝合线的开发[8?-10]
20世纪70年代初 PLLA纤维[11-12]
20世纪70年代末~80年代 PDS缝合线和Maxon[8?-10,12]
20世纪90年代 PLA缝合线及相关改性处理[8?-10,12]
20世纪90年代末 PDO缝合线[12]

表2

部分市面可吸收手术缝合线产品"

商品名称 年份 材质 功能 应用领域
Vicryl?缝合线(爱惜康) 1974年 聚糖乳酸910(乙交酯与丙交酯) 用于组织的闭合处理 眼科手术、软组织缝合或结扎
PDS?Ⅱ缝合线 1982年 聚对二氧环己酮聚合物(PPDO) 用于软组织缝合 小儿心血管手术和眼科手术
Monocryl?缝合线 1993年 聚卡普隆25(75%聚乙交酯和25%ε-己内酯) 用于软组织缝合 软组织缝合和结扎,不能用于显微外科手术
古氏SA+抗菌线 2016年 乙交酯-左旋丙交酯共聚物 用于各类组织缝合 皮下组织缝合、胃肠道手术以及血管手术
VelosorbTM快速编织缝合线(柯惠) 乙交酯和丙交酯组成 用于组织的闭合处理 皮肤和黏膜的软组组织闭合
BiosynTM单丝缝合线
(柯惠)
由乙交酯、二氧环己酮以及三亚甲基碳酸脂组成 用于软组织的闭合处理 适用于眼科以及皮肤黏膜的结扎处理
MONOCRYL* Plus抗菌缝合线(爱惜康) 乙交酯和25%ε-己内酯,外加三氯生涂层 用于软组织的闭合处理 适用于皮肤黏膜结扎处理,不适用眼科以及神经组织手术
[1] 李纪宽, 赵扬. 医用可吸收缝合线应用及发展[J]. 健康大视野, 2013, 21(6): 609-609.
LI Jikuan, ZHAO Yang. Medical absorbable suture applications and developments[J]. China Health Horizon, 2013, 21(6): 609-609.
[2] 任元元, 兰建武. 可生物降解医用缝合线的研究进展[J]. 合成纤维工业, 2007, 30(1): 47-50.
REN Yuanyuan, LAN Jianwu. Research progress in biodegradable medical suture[J]. China Synthetic Fiber Industry, 2007, 30(1): 47-50.
[3] SCOGNAMIGLIO F, TRAVAN A, RUSTIGHI I, et al. Adhesive and sealant interfaces for general surgery applications[J]. Journal of Biomedical Materials Research Part B: Applied biomaterials, 2016, 104(3): 626-639.
doi: 10.1002/jbm.b.v104.3
[4] LEE A, STANLEY G, BATCHELOR JM, et al. An international clinician survey comparing non-absorbable versus absorbable sutures for skin surgery: the canvas study[J]. The British Journal of Dermatology, 2022, 187(3): 445-447.
doi: 10.1111/bjd.21062
[5] EGBUNAH UP, ADAMASON O, FASHINA A, et al. Comparing the treatment outcomes of absorbable sutures, nonabsorbable sutures, and tissue adhesives in cleft lip repair: a systematic review[J]. Cleft Palate-Craniofacial Journal, 2022, 59(1): 110-120.
doi: 10.1177/1055665621996107
[6] 陆远, 王祺, 王煦, 等. 医用缝合线纤维材料发展及应用[J]. 合成材料老化与应用, 2022, 51(3): 140-142.
LU Yuan, WANG Qi, WANG Xun, et al. The Development and application of medical suture fiber material[J]. Synthetic Materials Aging and Application, 2022, 51(3): 140-142.
[7] SCHMACK G, TANDLER B, VOGEL R, et al. Biodegradable fibers of poly(l-lactide) produced by high-speed melt spinning and spin drawing[J]. Journal of Applied Polymer Science, 1999, 73(14): 2785-2797.
doi: 10.1002/(ISSN)1097-4628
[8] 王旭晨, 吴沁婷, 郑兆柱, 等. 医用缝合线的研究进展[J]. 安徽工程大学学报, 2020, 35(5): 1-11.
WANG Xuchen, WU Qinting, ZHENG Zhaozhu, et al. Advances in medical sutures[J]. Journal of Anhui Polytechnic University, 2020, 35(5): 1-11.
[9] 崔红星, 张倩. 聚乳酸类可吸收手术缝合线的研究进展[J]. 合成纤维, 2004, 33(4): 15-16.
CUI Hongxing, ZHANG Qian. The development of the research on PLA-based absorbable surgical sutures[J]. Synthetic Fiber in China, 2004, 33(4): 15-16.
[10] 刘小红, 陈向标, 赖明河, 等. 可吸收医用缝合线的研究进展[J]. 合成纤维, 2012, 41(4): 23-26.
LIU Xiaohong, CHEN Xiangbiao, LAI Minghe, et al. Research progress of medical absorbable sutures[J]. Synthetic Fiber in China, 2012, 41(4): 23-26.
[11] 徐向奎, 冯亚凯, 薛燕. 对二氧环己酮及其聚合物的研究进展[J]. 化学工业与工程, 2008, 25(3): 259-263.
XU Xiangkui, FENG Yakai, XUE Ya. Progress in pzdioxanone and poly (pzdioxanone)[J]. Chemical Industry and Engineering, 2008, 25(3): 259-263.
[12] KULKARNI R K, MOORE E G, HEGYELI A F, et al. Biodegradable poly(lactic acid) polymers[J]. J Biomed Mater Res, 1971, 5(3): 169-181.
[13] 秦冬雨, 王文祖. 医用缝合线的结构与性能[J]. 产业用纺织品, 2001, 19(10): 16-19.
QIN Dongyu, WANG Wenzu. Structure and property for medical suture[J]. Technical Textiles, 2001, 19(10): 16-19.
[14] 王成芳. 聚乙丙交酯及其涂层缝合线降解行为的研究[D]天津: 天津工业大学, 2013: 33-54.
WANG Chengfang. Study on the degradation behavior of poly(lactide-co-glycolide ) and its coating sutures[D]. Tianyong: Tianjin Polytechnic University, 2013: 33-54.
[15] 朱斐超, 张宇静, 张强, 等. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(1): 49-57.
ZHU Feichao, ZHANG Yujing, ZHANG Qiang, et al. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens[J]. Journal of Textile Research, 2022, 43(1): 49-57.
[16] XU Shihua, LUO Haoxuan, HUANG Bijun, et al. Therapeutic effect of catgut implantation at acupoint in a mouse model of hepatocellular carcinoma by suppressing immune escape[J]. Evidence-based Complementary Alternative Medicine, 2022. DOI: 10.1155/2022/5572869.
[17] 王鸣, 鲍慧敏, 奚旸, 等. 用不同长度的羊肠线对单纯性肥胖病患者进行穴位埋线治疗的效果对比[J]. 当代医药论丛, 2020, 18(18):88-89.
WANG Ming, BAO Huiming, XI Yang, et al. Comparison of the effects of acupuncture point burial treatment with different lengths of lamb's intestine thread in patients with simple obesity[J]. Contemporary Medical Symposium, 2020, 18(18): 88-89.
[18] 李培仁. 胶原手术缝线[J]. 明胶科学与技术, 2001, 21(2):79-82.
LI Peiren. Collagen surgical filament[J]. The Science and Technology of Gelatin, 2001, 21(2): 79-82.
[19] 温永堂, 王东光, 付振刚, 等. 胶原医用可吸收缝合线的研制[J]. 天津纺织工学院学报, 1992(Z1): 1-8.
WEN Yongtang, WANG Dongguang, FU Zhengang, et al. Prepration of the collagen surgical absorbable suture[J]. Journal of Tianjin Polytechnic University, 1992(Z1): 1-8.
[20] 陈胜武. 可吸收胶原蛋白缝合线在骨科手术缝合中的应用效果观察[J]. 中国现代药物应用, 2016, 10(15):275-276.
CHEN Shengwu. The effect of absorbable collagen sutures in orthopaedic surgical sutures[J]. Chinese Journal of Modern Drug Application, 2016, 10(15): 275-276.
[21] 彭一帆, 王翀, 山院飞, 等. 可吸收胶原蛋白线用于Ⅰ,Ⅱ类手术切口缝合效果的Meta分析[J]. 中国组织工程研究, 2021, 25(28): 4587-4592.
PENG Yifan, WANG Chong, SHAN Yuanfei. Efficacy of absorbable collagen suture for type I and II surgical incisions: a meta-analysis[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(28): 4587-4592.
[22] ZHANG Jianfei, HAN Pengpeng, YUAN Hui, et al. Clinical application of absorbable collagen thread and cosmetic suture technique in emergency treatment of children's facial trauma[J]. Journal of Paediatrics and Child Health, 2022, 58(11): 2039-2043.
doi: 10.1111/jpc.16147 pmid: 35924762
[23] LUAN Zhaohui, LIU Shuang, WANG Wei, et al. Aligned nanofibrous collagen membranes from fish swim bladder as a tough and acid-resistant suture for pH-regulated stomach perforation and tendon rupture[J]. Biomaterials research, 2022. 26(1): 60.
doi: 10.1186/s40824-022-00306-1 pmid: 36348451
[24] 段久芳. 天然高分子材料[M]. 武汉: 华中科技大学出版社, 2016: 179-185.
DUAN Jiufang. Nature polymer material[M]. Wuhan: Huazhong University of Science & Technology Press, 2016: 179-185.
[25] NAKAJIMA M, ATSUMI K, KIFUNE K, et al. Chitin is an effective material for sutures[J]. Jpn.J.Surg. 1986, 16(6): 418-424.
[26] 侯春林, 盛志坚, 卢建熙, 等. 几丁质缝合线体内吸收的实验研究[J]. 第二军医大学学报, 1994(5): 452-453.
HOU Chunlin, SHENG Zhijian, LU Jianxi, et al. In vivo absorption of chitin suture:an experimental study[J]. Academic Journal of Second Military Medical University, 1994(5): 452-453.
[27] 刘世英, 吴清基, 王鹤忠, 等. 医用甲壳质与壳聚糖纤维的开发现状及前景[J]. 产业用纺织品, 1994(3): 6-12.
LIU Shiying, WU Qingji, WANG Hezhong, et al. Current status and prospects for the development of chitin and chitosan fibres for medical use[J]. Technical Textiles, 1994(3): 6-12.
[28] WU Huanling, WILLIAMS GR, WU Junzi, et al. Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials[J]. Carbohydrate Polymers, 2018, 180: 304-313.
doi: S0144-8617(17)31168-2 pmid: 29103510
[29] TAN Yongxin, RAKJOKA M S R, KE Zekai, et al. Effect of squid cartilage chitosan molecular structure on the properties of its monofilament as an absorbable surgical suture[J]. Polymers, 2022. DOI: 10.3390/polym14071306.
[30] ZHANG Qian, QIAO Yansha, ZHU Jianhua, et al. Electroactive and antibacterial surgical sutures based on chitosan-gelatin/tannic acid/polypyrrole composite coating[J]. Composites Part B: Engineering, 2021. DOI: 10.1016/j.compositesb.2021.109140.
[31] HARPE K M, MARIMUTHU T, KONDIAH P, et al. Synthesis of a novel monofilament bioabsorbable suture for biomedical applications[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2022, 110(10): 2189-2210.
doi: 10.1002/jbm.b.v110.10
[32] HUANG Xin, JING Huijuan, DU Xiaojing, et al. Electrostatically self-assembled filamentous sodium alginate/ε-polylysine fiber with antibacterial, bioadhesion and biocompatible in suturing wound[J]. International Journal of Biological Macromolecules, 2022, 200: 1-11.
doi: 10.1016/j.ijbiomac.2021.12.133
[33] SELVARAJU G D, UMAPATHY V R, SUMATHIJONES C, et al. Fabrication and characterization of surgical sutures with propolis silver nano particles and analysis of its antimicrobial proper-ties[J]. Journal of King Saud University: Science, 2022. DOI: 10.1016/j.jksus.2022.102082.
[34] PATRICK LAURÉN, PETTER SOMERSALO, IRINA PITKÄENE, et al. Nanofibrillar cellulose-alginate hydrogel coated surgical sutures as cell-carrier systems[J]. Plos One, 2017, 12(8): 1-17.
[35] WU Hongwei, GUO Tingting, ZHOU Feng, et al. Surface coating prolongs the degradation and maintains the mechanical strength of surgical suture in vivo[J]. Colloids and Surfaces B: Biointerfaces, 2022, 209: 10.1016/j.colsurfb.2021.112214.
[36] 张晓芳. 释药可控聚乳酸手术缝合线的制备及其性能研究[D]. 晋中: 太原理工大学, 2018:54-68.
ZHANG Xiaofang. Preparation and properties of polylactic acid surgical sutures with controlled drug release[D]. Jinzhong: Taiyuan University of Technology, 2018: 54-68.
[37] 刘明芳, 刘淑强, 张晓芳, 等. 聚乳酸手术缝合线的表面亲水改性研究[J]. 上海纺织科技, 2018, 46(3): 25-27.
LIU Mingfang, LIU Shuqiang, ZHANG Xiaofang, et al. Hydrophilic modification on surface of poly (lactic acid) (PLA) surgical suture[J]. Shanghai Textile Science & Technology, 2018, 46(3): 25-27.
[38] LIU Shuqiang, WU Gaihong, ZHANG Xiaofang, et al. Preparation and properties of poly (lactic acid) (PLA) suture loaded with PLA microspheres enclosed drugs (PM-Ds)[J]. Journal of The Textile Institute, 2019, 110(11): 1596-1605.
doi: 10.1080/00405000.2019.1610999
[39] DE OCA H M, WARD I M. Structure and mechanical properties of PGA crystals and fibres[J]. Polymer, 2006, 47(20): 7070-7077.
doi: 10.1016/j.polymer.2006.07.045
[40] LIU Shuqiang, WU Gaihong, ZHANG Xiaofang, et al. Degradation and drug-release behavior of polylactic acid (PLA), medical suture coating with tea polyphenol (TP)-polycaprolactone (PCL)/polyglycolide (PGA)[J]. Fibers and Polymers, 2019, 20(2): 229-235.
doi: 10.1007/s12221-019-8829-8
[41] MARIMALLAPPA T R, SUPRIYO P, ASHOK K K R, et al. A comparative microbiological study of polyglycolic acid and silk sutures in oral surgical procedures[J]. Minerva Dental and Oral Science, 2021, 70(6): 239-247.
doi: 10.23736/S2724-6329.21.04515-0 pmid: 34132506
[42] JING Xin, MI Haoyang, HUANG Haoxiong, et al. Shape memory thermoplastic polyurethane (TPU)/poly(ε-caprolactone) (PCL) blends as self-knotting sutures[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64: 94-103.
doi: 10.1016/j.jmbbm.2016.07.023 pmid: 27490212
[43] 余璠. 聚己内酯-聚乙交酯载药微创埋植线的制备及性能研究[D]. 上海: 东华大学, 2020: 13-35.
YU Fan. Preparation and properties of polycaprolactone-polyglycolide drug loaded acupoint embedding thread[D]. Shanghai: Donghua University, 2020: 13-35.
[44] HU Jinyu, SONG Yi, ZHANG Cuiyun, et al. Highly aligned electrospun collagen/polycaprolactone surgical sutures with sustained release of growth factors for wound regeneration[J]. ACS Applied Bio Materials, 2020, 3(2): 965-976.
doi: 10.1021/acsabm.9b01000 pmid: 35019298
[45] LEE Y, KIM H, KIM Y, et al. A multifunctional electronic suture for continuous strain monitoring and on-demand drug release[J]. Nanoscale, 2021, 13(43): 18112-18124.
doi: 10.1039/d1nr04508c pmid: 34604894
[46] RANJBAR-MOHAMMADI M, SA'DI V, MOEZZI M, et al. Fabrication and characterization of antibacterial suture yarns containing PLA/tetracycline hydrochloride-PVA/chitosan nanofibers[J]. Fibers and Polymers, 2022, 23(6): 1538-1547.
doi: 10.1007/s12221-022-4685-z
[47] CHRISTINA Otto-lambertz, LOTTE Decker, ANNE Adams Msc, et al. Can triclosan-coated sutures reduce the postoperative rate of wound infection? data from a systematic review and meta-analysis[J]. Surgery, 2023, 174(3): 638-646.
doi: 10.1016/j.surg.2023.04.015
[48] MEHMET ALTUNTAS, FATIH SABAN BERIS, VAGIF NEVRUZOGLU, et al. Deposition and characterization of the Ag nanoparticles on absorbable surgical sutures at the cryogenic temperatures[J]. Applied Physics A, 2023, 129(2): 1-10.
doi: 10.1007/s00339-022-06289-z
[49] SUNITHA Sampathi, PANKAJ Kumar Tiriya, SUJATHA Dodoala, et al. Development of biocompatible ciprofloxacin-gold nanoparticle coated sutures for surgical site infections[J]. Pharmaceutics, 2022. DOI: 10.3390/pharmaceutics14102130.
[1] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[2] 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98.
[3] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[4] 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8.
[5] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[6] 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47.
[7] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[8] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[9] 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56.
[10] 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37-43.
[11] 王春红, 杨璐, 胡敏, 王晓云, 王利剑. 乌拉草提取液中木犀草素含量的测定及其抗菌性能[J]. 纺织学报, 2021, 42(04): 114-120.
[12] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[13] 黎俊妤, 蒋培清, 张文奇, 李文斌. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30.
[14] 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11): 102-108.
[15] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!