纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 1-10.doi: 10.13475/j.fzxb.20230704801
• 纤维材料 • 下一篇
翟倩1, 张恒1(), 赵珂1, 朱文辉1, 甄琪2, 崔景强3
ZHAI Qian1, ZHANG Heng1(), ZHAO Ke1, ZHU Wenhui1, ZHEN Qi2, CUI Jingqiang3
摘要:
为开发兼具快速导液能力和一定抗拉强度的新型纤维基加湿芯,利用熔喷原位牵伸工艺制备的高定向排列聚乳酸(PLA)微纳米纤维材料与大孔隙粘胶纤维材料进行叠层复合,得到筒状纤维集合体,并对其形貌特征、吸湿速率、干燥速率以及力学性能等进行表征与测试。结果表明:筒状纤维集合体表现出类竹节形貌的层状定向微孔结构,密度为1.1~1.8 g/cm3;受益于纤维平均直径和密度的有效调控,吸湿速率和干燥速率分别增加到112.4 mg/s 和1.03 mL/h,同时拉伸断裂强力保持在255.2 N以上。仿生竹节纤维基加湿材料样品在实际使用过程中的加湿量为39 mL/h,既可作为高性能纤维基加湿芯用于室内微环境湿度调节,又可为高导液纤维材料的功能性结构设计和绿色制备提供参考。
中图分类号:
[1] | JO Suyoung, CHO Hyejin, JEONG Jaeweon. Humidification performance of hollow-fiber membrane humidifier for air-conditioning applications[J]. Applied Thermal Engineering, 2023. DOI:10.1016/J.APPLTHERMALE-NG.2023.120335. |
[2] | GUO Kangqi, QIAN Hua, LIU Fan, et al. The impact of using portable humidifiers on airborne particles dispersion in indoor environment[J]. Journal of Building Engineering, 2021. DOI:10.1016/J.JOBE.2021.103147. |
[3] | CHEN Jingxiu, MAI Jianzhang, WANG Chao, et al. Biomimetic aligned micro-/nanofibrous composite membranes with ultrafast water transport and evaporation for efficient indoor humidification[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1983-1993. |
[4] | CHEN Yiming, LI Shujing, LI Xinlin, et al. Liquid transport and real-time dye purification via lotus petiole-inspired long-range-ordered anisotropic cellulose nanofibril aerogels[J]. ACS Nano, 2021.DOI:10.10211acsnano.1C10093. |
[5] | XU Zhicheng, RAN Xueqin, ZHANG Zhijie, et al. Designing a solar interfacial evaporator based on tree structures for great coordination of water transport and salt rejection[J]. Materials Horizons, 2023(5):1737-1744. |
[6] | YUAN Jing, CHEN Qi, FEI Benhua. Different characteristics in the hygroscopicity of the graded hierarchical bamboo structure[J]. Industrial Crops & Products, 2022. DOI:10.1016/J.INDCROP.2021.114333. |
[7] |
CHEN Yiming, ZHOU Lijie, CHEN Lian, et al. Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport[J]. Cellulose, 2019, 26(11):6653-6667.
doi: 10.1007/s10570-019-02557-z |
[8] | LIU Donglei, HAN Jiaxin, ZHUANG Xijing, et al. Evaluation of mechanical properties and biocompatibility of three-layer PCL/PLLA small-diameter vascular graft with pore diameter gradient[J]. European Polymer Journal, 2023. DOI:10.1016/J.EURPOLYMJ.2023.111864. |
[9] | WANG Xianfeng, HUANG Zhan, MIAO Dongyang, et al. Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics[J]. ACS Nano, 2019. DOI:10.1021/acsnano.8b08242. |
[10] | HELMUT Cölfen. Bamboo nodes show nature's wisdom[J]. National Science Review, 2023. DOI:10.1093/NSR/NWAC270. |
[11] | CHEN Feng, BA Qixin, LU Wenchao, et al. Preparation of combined oleophobic fibre filters with pore size gradients and their high-efficiency removal of oil mist droplets[J]. Separation and Purification Technology, 2022. DOI:10.1016/J.SEPPUR.2022.122653. |
[12] | CHEN Lixia, AHMED Babaraijaz, HUANG Gang, et al. Moisture wicking textiles with hydrophilic oriented polyacrylonitrile layer: enabling ultrafast directional water transport[J]. Journal of Colloid and Interface Science, 2023: 200-209. |
[13] | GUO Feng, HAN Rizheng, YING Jishan, et al. Bioinspired polymeric heart valves derived from polyurethane and natural cellulose fibers[J]. Journal of Materials Science & Technology, 2023:178-187. |
[14] | 朱斐超, 张宇静, 张强, 等. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(1):49-57. |
ZHU Feichao, ZHANG Yujing, ZHANG Qiang, et al. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens[J]. Journal of Textile Research, 2022, 43(1):49-57. | |
[15] |
ZHAN Lei, WANG Lingtian, DENG Jixia, et al. Enhanced cellular infiltration of tissue-engineered scaffolds fabricated by PLLA nanogrooved micro-fibers[J]. Nano Research, 2023, 16:1614-1625.
doi: 10.1007/s12274-022-4838-9 |
[16] | 孙焕惟, 张恒, 崔景强, 等. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(6):86-93. |
SUN Huanwei, ZHANG Heng, CUI Jingqiang, et al. Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process[J]. Journal of Textile Research, 2022, 43(6):86-93.
doi: 10.1177/004051757304300205 |
|
[17] |
ZHAO Yinuo, LI Wenhui, ZHAN Shiyuan, et al. Breakthrough pressure of oil displacement by water through the ultra-narrow kerogen pore throat from the Young-Laplace equation and molecular dynamic simulations[J]. Physical Chemistry Chemical Physics: PCCP, 2022, 24(28): 17195-17209.
doi: 10.1039/D2CP01643E |
[18] | 李亮, 裴斐斐, 刘淑萍, 等. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11):1-8. |
LI Liang, PEI Feifei, LIU Shuping, et al. Preparation and characterization of polylactic acid nanofiber drug loaded medical dressings[J]. Journal of Textile Research, 2022, 43(11):1-8.
doi: 10.1177/004051757304300101 |
|
[19] | LI Ziheng, WANG Mingxin, CHEN Lumin, et al. Highly efficient carbonization of nanocellulose to biocarbon aerogels with ultrahigh light absorption efficiency and evaporation rate as bifunctional solar/electric driven steam generator for water purification[J]. Sustainable Materials and Technologies, 2023. DOI: 10.1016/J.SUSMAT.2023.E00649. |
[20] | NEUNKIRCHEN Stefan, BLÖßL Yannick, SCHLEDJEWSKI Ralf. A porous capillary tube approach for textile saturation[J]. Composites Science and Technology, 2022. DOI:10.1016/J.COMPSCITECH.2022.109450. |
[21] | QI Shumao, XU Lu, SHAO Haiyang, et al. Cross-linked HMO/PVA nanofiber mats for efficient lithium extraction from Salt-lake[J]. Separation and Purification Technology, 2023. DOI: 10.1016/J.SEPPUR.2023.124382. |
[22] | ZHANG Heng, ZHAI Qian, GUAN Xiaoyu, et al. Tri-layered bicomponent microfilament composite fabric for highly efficient cold protection[J]. Small, 2023. DOI: 10.1002/SMLL.202303820. |
[1] | 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188. |
[2] | 史玉磊, 曲连艺, 刘江龙, 徐英俊. 氧化锌/儿茶酚甲醛树脂微球抗菌粘胶纤维的制备及其性能[J]. 纺织学报, 2024, 45(02): 21-27. |
[3] | 魏义慧, 张宇静, 邓辉话, 邓庆辉, 陈浩锵, 张须臻, 于斌, 朱斐超. 高熔融指数聚乙烯母粒的制备及其红外透射熔喷材料的可纺性[J]. 纺织学报, 2024, 45(02): 28-35. |
[4] | 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22. |
[5] | 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29. |
[6] | 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38. |
[7] | 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55. |
[8] | 孟娜, 王先锋, 李召岭, 俞建勇, 丁彬. 熔喷非织造布的驻极技术研究进展[J]. 纺织学报, 2023, 44(12): 225-232. |
[9] | 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34. |
[10] | 刘骏韬, 孙婷, 涂虎, 胡敏, 张如全, 孙雷, 罗霞, 纪华. 全棉水刺非织造布的等离子体冷堆脱脂漂白工艺响应面法优化[J]. 纺织学报, 2023, 44(11): 132-141. |
[11] | 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126. |
[12] | 娄辉清, 上媛媛, 曹先仲, 徐蓓蕾. 碳氮化钛/粘胶纤维束集合体太阳能界面水蒸发器的制备及其性能[J]. 纺织学报, 2023, 44(10): 9-15. |
[13] | 徐瑞东, 王航, 曲丽君, 田明伟. 聚乳酸非织造基材触摸传感电子织物制备及其性能[J]. 纺织学报, 2023, 44(09): 161-167. |
[14] | 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98. |
[15] | 谷英姝, 朱燕龙, 汪滨, 董振峰, 谷潇夏, 杨昌兰, 崔萌, 张秀芹. 聚乳酸/驻极体熔喷非织造材料的制备及其性能[J]. 纺织学报, 2023, 44(08): 41-49. |
|