纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 119-125.doi: 10.13475/j.fzxb.20230603301
王博1,2, 刘美亚1, 陈明娜2, 宋孜灿2, 夏明1, 李沐芳1, 王栋1()
WANG Bo1,2, LIU Meiya1, CHEN Mingna2, SONG Zican2, XIA Ming1, LI Mufang1, WANG Dong1()
摘要:
为制备应用于运动监测方面的柔性拉伸应变传感器,探索拉伸型应变传感材料自身长度及拉伸应变对运动监测效果的影响,将表面聚合吡咯的氨纶长丝裁剪成不同长度进行循环拉伸测试,通过扫描电子显微镜和红外光谱仪对氨纶长丝和聚吡咯/氨纶长丝的微观形貌及化学结构进行表征,并测试分析了不同长度的聚吡咯/氨纶长丝在不同速率下拉伸不同应变时的电力学性能。结果表明:通过原位聚合可使聚吡咯完全覆盖氨纶长丝表面,所得聚吡咯/氨纶长丝在500%的应变范围内应力最高可达21.0 MPa;灵敏度值在0%~63%和118%~243%应变范围内分别为1.82和43.3,在800 mm/min速率下拉伸10%应变的响应时间为200 ms。为探索聚吡咯/氨纶长丝与实际应用的匹配性,测试了不同长度聚吡咯/氨纶长丝在连续循环拉伸过程中的电阻变化,归纳其电阻变化特性,并将有效长度1 cm的聚吡咯/氨纶长丝固定在食指第2关节处以监测手指关节的重复弯曲。
中图分类号:
[1] |
HERZ M, RAUSCHNABEL P A. Understanding the diffusion of virtual reality glasses: the role of media, fashion and technology[J]. Technological Forecasting and Social Change, 2019, 138: 228-242.
doi: 10.1016/j.techfore.2018.09.008 |
[2] | 唐昊阳, 谢国坤, 张育培, 等. 基于用户行为逻辑的智能手环交互设计[J]. 电子技术, 2023, 52(2):290-291. |
TANG Haoyang, XIE Guokun, ZHANG Yupei, et al. Design of intelligent bracelet interaction based on user behavior logic[J]. Electronic Technology, 2023, 52(2): 290-291. | |
[3] | 魏志丽, 何应侯, 罗俊彬. 基于STM32单片机的智能健康腕表设计[J]. 机电工程技术, 2023, 52(3):241-245. |
WEI Zhili, HE Yinghou, LUO Junbin. Designing a smart health watch with STM32[J]. Mechanical & Electrical Engineering Technology, 2023, 52(3): 241-245. | |
[4] | 王适, 许志. 老年女性心率监测背心功能结构分区设计研究[J]. 针织工业, 2022(6):55-59. |
WANG Shi, XU Zhi. Function-based partition design of heart rate monitoring vest for elderly women[J]. Knitting Industries, 2022(6): 55-59. | |
[5] | 王博, 凡力华, 原韵, 等. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10):101-106. |
WANG Bo, FAN Lihua, YUAN Yun, et al. Preparation and electric storage performance of stretchable polypyrrole/cotton knitted fabric[J]. Journal of Textile Research, 2020, 41(10): 101-106.
doi: 10.1177/004051757104100203 |
|
[6] | WANG B, PENG J, YANG K, et al. Multifunctional textile electronic with sensing, energy storing, and electrothermal heating capabilities[J]. ACS Applied Materials & Interfaces, 2022, 14: 22497-22509. |
[7] |
GAO Y, GUO F, CAO P, et al. Winding-Locked carbon nanotubes/polymer nanofibers helical yarn for ul-trastretchable conductor and strain sensor[J]. ACS Nano, 2020, 14: 3442-3450.
doi: 10.1021/acsnano.9b09533 |
[8] | ZHOU J, TIAN G, JIN G, et al. Buckled conductive polymer ribbons in elastomer channels as stretchable fiber conductor[J]. Advanced Functional Materials, 2019.DOI:10.1002/adfm.201907316. |
[9] | LU L, ZHOU Y, PAN J, et al. Design of helically dou-ble-leveled gaps for stretchable fiber strain sensor with ultralow detection limit, broad sensing range, and high repeatability[J]. ACS Applied Materials & Interfaces, 2019, 11: 4345-4352. |
[10] | 张轩豪, 陈金伍, 刘孙辰星, 等. 基于MXene的应变纤维传感器制备及其表征[J]. 电子器件, 2022, 45(1):117-122. |
ZHANG Xuanhao, CHEN Jinwu, LIU Sunchenxing, et al. Preparation and characterization of MXene-based strain fiber sensors[J]. Chinese Journal of Electron Devices, 2022, 45(1): 117-122. | |
[11] | PENG J, WANG B, CHENG H, et al. Highly sensitive and superhydrophobic fabric sensor based on AgNPs/polypyrrole composite conductive networks for body movement monitoring[J]. Composites Science and Technology, 2022. DOI: 10.1016/j.compscitech.2022.109561. |
[12] | YANG K, CHENG H, WANG B, et al. Highly durable and stretchable Ti3C2Tx/PPy-fabric-based strain sensor for human-motion detection[J]. Advanced Materials Technologies, 2022. DOI: 10.1002/admt.202100675. |
[13] | 刘焘, 邹奉元. 涂碳纤维导电针织物的结构设计及其传感性能[J]. 纺织学报, 2014, 35(9): 31-35,46. |
LIU Tao, ZHOU Fengyuan. Structural design and sens-ing performance of conductive knitted fabrics of car-bon coated fiber[J]. Journal of Textile Research, 2014, 35(9): 31-35,46. | |
[14] | ZHANG X, KE L, ZHANG X, et al. Breathable and wearable strain sensors based on synergistic conduc-tive carbon nanotubes/cotton fabrics for multi-directional motion detection[J]. ACS Applied Materials & Interfaces, 2022, 14: 25753-25762. |
[15] | LU D, LIAO S, CHU Y, et al. Highly durable and fast response fabric strain sensor for movement monitoring under extreme conditions[J]. Advanced Fiber Materi-als, 2022, 5: 223-234. |
[16] | LIU Z, LI Z, ZHAI H, et al. A highly sensitive stretcha-ble strain sensor based on multi-functionalized fabric for respiration monitoring and identification[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2021.130869. |
[17] | ZHU T, LIU L, HUANG J, et al. Multifunctional hy-drophobic fabric-based strain sensor for human motion detection and personal thermal management[J]. Journal of Materials Science & Technology, 2023, 138: 108-116. |
[1] | 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82. |
[2] | 王雅倩, 万爱兰, 曾登, 吴光军, 祁倩. 形状记忆氨纶/锦纶包覆纱的制备及其压力袜性能[J]. 纺织学报, 2023, 44(10): 53-59. |
[3] | 王雅倩, 万爱兰, 曾登. 棉/形状记忆氨纶纬编免烫衬衫面料制备及其性能评价[J]. 纺织学报, 2023, 44(05): 125-131. |
[4] | 彭来湖, 罗昌, 戴宁, 胡旭东, 牛冲. 动态恒张力氨纶输送控制研究[J]. 纺织学报, 2023, 44(04): 194-203. |
[5] | 李龙, 吴磊, 林思伶. 捻度对棉/氨纶/银丝包芯纱性能的影响[J]. 纺织学报, 2023, 44(01): 100-105. |
[6] | 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163. |
[7] | 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23. |
[8] | 王晨露, 马金星, 杨雅晴, 韩潇, 洪剑寒, 占海华, 杨施倩, 姚绍芳, 刘姜乔娜. 聚苯胺涂层经编织物的应变传感性能及其在呼吸监测中的应用[J]. 纺织学报, 2022, 43(08): 113-118. |
[9] | 权衡, 任敬之, 陈文龙, 袁辉, 谢南平, 巫若子, 倪丽杰. 有机硅及其共混物在锦纶/氨纶织物上的迁移与分布[J]. 纺织学报, 2022, 43(06): 115-120. |
[10] | 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115. |
[11] | 邹梨花, 杨莉, 兰春桃, 阮芳涛, 徐珍珍. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118. |
[12] | 陈莹, 方浩霞. 疏水性导电聚吡咯整理棉织物的制备及其性能[J]. 纺织学报, 2021, 42(10): 115-119. |
[13] | 闫涛, 潘志娟. 轻薄型取向碳纳米纤维膜的应变传感性能[J]. 纺织学报, 2021, 42(07): 62-68. |
[14] | 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(06): 114-119. |
[15] | 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177. |
|