纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 126-133.doi: 10.13475/j.fzxb.20231008901
陈露1, 石宝1,2, 魏赛男1,2, 贾立霞1,2, 阎若思1,2()
CHEN Lu1, SHI Bao1,2, WEI Sainan1,2, JIA Lixia1,2, YAN Ruosi1,2()
摘要:
为提高能源储存器件的柔韧性及安全性,开发柔性可穿戴三维一体储能设备。制备二维过渡金属碳化物Ti3C2Tx(MXene)/锌(Zn)三维一体针织结构超级电容器(ZSC)。通过透射电子显微镜和X射线衍射仪对MXene纳米片微观形貌和涂层情况进行表征,利用电化学工作站探究其储能性能。结果表明,ZSC具有优异的倍率性能,在电流密度为1 mA/cm2时,ZSC面积电容为345.56 mF/cm2。分析超级电容器的储能机制为负极侧的可逆Zn沉积/剥离和正极离子吸附/解吸。经过10 000次充放电循环,ZSC仍具有93.51%的电容保持率和92.43%的库伦效率,且能量密度为25.05 μW·h/cm2时,功率密度为10 mW/cm2。ZSC在空气中放置30 d,其储能性能保持稳定,表现出良好的电化学耐久性与稳定性。
中图分类号:
[1] | XIONG Y, HAN J, WANG Y, et al. Emerging iontronic sensing: materials, mechanisms, and applications[J]. Research, 2022, 50; 479-488. |
[2] | 娄辉清, 朱斐超, 李磊磊, 等. 碳纳米管/Ni/聚苯胺纤维状超级电容器的制备及其电化学性能[J]. 纺织学报, 2022, 43(11): 35-40. |
LOU Huiqing, ZHU Feichao, LI Leilei, et al. Preparation and electrochemical performance of composite carbon nanotube/Ni/polyanilline fibrous supercapacitor[J]. Journal of Textile Research, 2022, 43(11): 35-40. | |
[3] | 聂文琪, 孙江东, 许帅, 等. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(7): 200-206. |
NIE Wenqi, SUN Jiangdong, XU Shuai, et al. Progress on flexible textile fibre-based supercapacitors[J]. Journal of Textile Research, 2022, 43(7): 200-206. | |
[4] | CHEN A, WANG C, ABU O A, et al. MXene@nitrogen-doped carbon films for supercapacitor and piezoresistive sensing applications[J]. Composites Part A: Applied Science and Manufacturing, 2022.DOI:10.1016/j.compositesa.2022.107174. |
[5] | YUAN M, ZHANG X, WANG J, et al. Recent progress of energy-storage-device-integrated sensing systems[J]. Nanomaterials (Basel), 2023, 4(12): 645. |
[6] | ZHU W B, LUO H S, TANG Z H, et al. Ti3C2Tx MXene/Bamboo fiber/PDMS pressure sensor with simultaneous ultrawide linear sensing range, superb environmental stability, and excellent biocompati-bility[J]. ACS Sustainable Chemistry & Engineering, 2022, 10 (11): 3546-3556. |
[7] | GUNASEKARAN S S, VEERALINGAM S, BADHULIKA S, et al. "One for two" strategy of fully integrated textile based supercapacitor powering an ultra-sensitive pressure sensor for wearable applications[J]. Journal of Energy Storage, 2022. DOI:10.1016/j.est.2022.103994. |
[8] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253.
doi: 10.1002/adma.v23.37 |
[9] |
GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81.
doi: 10.1038/nature13970 |
[10] | HE J, SHI F, LIU Q, et al. Wearable superhydrophobic PPy/MXene pressure sensor based on cotton fabric with superior sensitivity for human detection and information transmission[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022.DOI:10.1016/j.colsurfa.2022.128676. |
[11] |
CHEN C, CHEN L, WU Z, et al. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors[J]. Materials Today, 2020; 32: 84-93.
doi: 10.1016/j.mattod.2019.10.025 |
[12] | WEN J, XU B, ZHOU J. Towards 3D knitted-fabric derived supercapacitors with full structural and functional integrity of fiber and electroactive mater-ials[J]. Journal of Power Sources, 2020.DOI:10.1016/j.jpowsour.2020.228559. |
[13] | ZHANG Y, WANG L, ZHAO L, et al. Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus @ MXene thin-films[J]. Advanced Materials, 2021.DOI:10.1002/adma.202007890. |
[14] |
XU S K, DALL'AGNESEA Y, WEI G, et al. Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors[J]. Nano Energy, 2018, 50, 479-488.
doi: 10.1016/j.nanoen.2018.05.064 |
[15] |
PENG Y Y, AKUZUM B, KURRA N. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage[J]. Energy Environmental Science, 2016, 9: 2847-2854.
doi: 10.1039/C6EE01717G |
[1] | 常辰玉, 王雨薇, 原旭阳, 刘锋, 卢致文. 基于交织点改进弹簧-质点模型的纬编针织物动态变形模拟[J]. 纺织学报, 2024, 45(01): 99-105. |
[2] | 孙磊, 屠佳佳, 毛慧敏, 王俊茹, 史伟民. 针织智能车间自动换筒任务调度技术[J]. 纺织学报, 2023, 44(12): 189-196. |
[3] | 盛晓超, 刘泽旭, 胥光申, 石英男. 线性磁悬浮织针驱动系统运动控制与实验分析[J]. 纺织学报, 2023, 44(12): 197-204. |
[4] | 管图祥, 吴健, 暴宁钟. 微流控纺丝制备石墨烯纤维基柔性超级电容器的研究进展[J]. 纺织学报, 2023, 44(12): 205-215. |
[5] | 贾丽萍, 黎明, 李威龙, 冉建华, 毕曙光, 李时伟. 基于长银纳米线的应变传感与电热双功能包芯纱的制备及其性能[J]. 纺织学报, 2023, 44(10): 113-119. |
[6] | 戴宁, 梁汇江, 胡旭东, 陆哲昊, 徐开心, 袁嫣红, 屠佳佳, 曾志发. 纬编针织机编织过程中三角振动响应特性[J]. 纺织学报, 2023, 44(10): 181-187. |
[7] | 李玉贤, 巫晓雯, 吴光军, 丛洪莲. 针织毛衫版片的参数化设计模型与实现[J]. 纺织学报, 2023, 44(09): 168-174. |
[8] | 任国栋, 屠佳佳, 李杨, 邱子安, 史伟民. 基于轻量化网络和知识蒸馏的纱线状态检测[J]. 纺织学报, 2023, 44(09): 205-212. |
[9] | 丁雪婷, 王建萍, 潘婷, 姚晓凤, 袁鲁宁. 仿蜻蜓翅膀结构的冬季针织面料研发及其性能[J]. 纺织学报, 2023, 44(09): 75-83. |
[10] | 李露红, 赵博宇, 丛洪莲. 复合结构经编针织电容式传感器设计及其性能[J]. 纺织学报, 2023, 44(08): 88-95. |
[11] | 孙园园, 张琦, 张燕婷, 左露娇, 丁宁宇. 三维通孔结构三色三贾卡提花间隔鞋材的研发[J]. 纺织学报, 2023, 44(07): 110-115. |
[12] | 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(07): 214-221. |
[13] | 王开, 王瑾, 牛丽, 陈超余, 马丕波. 棉/不锈钢丝包芯纱针织电路制备及其导电稳定性能[J]. 纺织学报, 2023, 44(07): 64-71. |
[14] | 俞旭良, 丛洪莲, 孙菲, 董智佳. 仿猪笼草口缘结构功能针织物的设计与应用[J]. 纺织学报, 2023, 44(07): 72-78. |
[15] | 史伟民, 简强, 李建强, 汝欣, 彭来湖. 基于非线性扩散和多特征融合的提花针织物疵点检测[J]. 纺织学报, 2023, 44(07): 86-94. |
|