纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 189-197.doi: 10.13475/j.fzxb.20230803401

• 染整工程 • 上一篇    下一篇

表面刻蚀/聚硅氧烷修饰纯棉水刺材料的制备及其性能

顾佳华1, 戴鑫鑫1, 邹专勇1, 刘诗仪2, 张显涛3, 韩旭4, 陆斌4, 张寅江1()   

  1. 1.绍兴文理学院 浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
    2.绍兴福清卫生用品有限公司, 浙江 绍兴 312000
    3.振德医疗用品股份有限公司, 浙江 绍兴 312000
    4.杭州杭纺科技有限公司, 浙江 杭州 311200
  • 收稿日期:2023-08-16 修回日期:2023-12-01 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 张寅江(1987—),男,副教授,博士。主要研究方向为纺织新技术与功能型纺织材料设计开发。E-mail:zyjdhdx2011@hotmail.com
  • 作者简介:顾佳华(1998—),男,硕士生。主要研究方向为纺织材料与纺织品设计。
  • 基金资助:
    国家自然科学基金青年科学基金项目(51903156);浙江省科技厅领雁研发攻关计划项目(2022C01SA691301);中国纺织工业联合会科技指导性项目(2022027);国家级大学生创新创业训练计划项目(202310349040);绍兴文理学院-浙江大学绍兴研究院联合科研资助基金项目(2023LHLG008)

Preparation and properties of surface-etched/polysiloxane-modified cotton spunlace materials

GU Jiahua1, DAI Xinxin1, ZOU Zhuanyong1, LIU Shiyi2, ZHANG Xiantao3, HAN Xu4, LU Bin4, ZHANG Yinjiang1()   

  1. 1. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Shaoxing Fuqing Health Products Co., Ltd., Shaoxing, Zhejiang 312000, China
    3. Zhende Medical Supplies Co., Ltd., Shaoxing, Zhejiang 312000, China
    4. Hangzhou Hanford Technology Co., Ltd., Hangzhou, Zhejiang 311200, China
  • Received:2023-08-16 Revised:2023-12-01 Published:2024-02-15 Online:2024-03-29

摘要:

针对伤口愈合中新生肉芽组织易粘连敷料引起创面二次感染的问题,通过等离子体刻蚀协同喷涂聚硅氧烷疏水改性纯棉水刺非织造材料,制备了一种具有防粘连潜力的非织造基医用敷料。采用正交试验方法,优化等离子体放电时间、等离子体放电功率及喷涂线速度工艺参数,同时对优化处理前后材料的疏水、表面形貌、化学结构、力学、防粘连、生物相容等性能进行测试与分析。结果表明:当放电时间为9 min、放电功率为25 W、喷涂线速度为5 mm/s时,纯棉水刺材料疏水效果最佳,接触角为141.1°;优化处理能有效提升材料的防粘连性能,其纵向剥离能为(350.0±29.9) J/m2,横向剥离能为(363.1±46.9) J/m2,满足医用敷料防粘连要求;同时优化处理材料溶血率小于5%,凝血功能得到明显提升且无细胞毒性,满足医用材料生物相容性要求。

关键词: 表面刻蚀, 聚硅氧烷, 纯棉水刺材料, 疏水改性, 防粘连, 医用敷料

Abstract:

Objective Cotton spunlace material is an ideal substrate for medical wound dressings due to its softness, skin-friendliness, environmental protection, and low cost. However, the hydrophilicity and porous structure of the cotton fiber assembly may cause granulation tissue to grow inward, resulting in wound adhesion during wound healing. When the dressing material is removed from the wound, this would cause secondary tissue damage and pain, and prolong the healing time. Therefore, this research sets out to investigate the hydrophobic modification of cotton spunlace materials to enhance the anti-adhesive properties.

Method In this study, the hydrophobicity of cotton spunlace material was achieved by a two-step method. The first step was non-thermal plasma etching to form a rough surface structure, and the second step was to spray polydimethylsiloxane (PDMS) to obtain a stable and safe hydrophobic effect. To achieve the best results, orthogonal experiments were conducted to optimize parameters such as plasma discharge time, discharge power and spray line speed. Subsequently, the hydrophobicity, surface morphology, chemical structure, mechanical properties, anti-adhesion and biocompatibility of the optimized material were thoroughly characterized and analyzed.

Results The optimal process for hydrophobic treatment of cotton spunlace materials was determined by means of orthogonal analysis of variance. The results indicated that when the plasma discharge time was 9 minutes, the discharge power was 25 W, and the spray coating line speed was 5 mm/s, the expected effect could be achieved with the material contact angle being 141.1°. Meanwhile, the electron micrographs clearly showed the existence of micro-nano rough structure on the fiber surface of the optimized material, confirming the effectiveness of the plasma etching process.

The presence of Si elements in the treated materials was proved by elemental analysis, and Si—O and Si—C groups were observed in the infrared spectrum. These findings indicated the effective deposition of PDMS on the material surface. Furthermore, the absorption intensity of PDMS functional groups remained unchanged after heat treatment and n-heptane cleanout. It was illustrated that firm and stable covalent bonds were formed between PDMS and material, and PDMS was grafted with cellulose molecular chain.

In terms of mechanical properties, the elongation at break of the material did not change after treatment, but the tensile strength decreased significantly. Additionally, the anti-adhesion test demonstrated that the optimized treatment effectively improved the anti-adhesive properties of the materials. The peeling energy in the machine direction (MD) was measured as (350.0±29.9) J/m2, while in the cross direction (CD) it was (363.1±46.9) J/m2, which met the requirements of non-adhesive medical dressings. The biocompatibility evaluation confirmed that the hemolysis rate of the material was (4.19±0.56)%, which met the requirements for biomedical materials. On the other hand, the coagulation index of the material was further reduced than that of the cotton hydroentangled material. It still maintained a gradually decreasing trend with the extension of time, which presented an obvious procoagulant effect. In addition, the cell viability of the optimized material was 89.9%, indicating its non-toxicity.

Conclusion In this paper, a novel environmentally-friendly and safe anti-adhesion medical dressing was developed for cotton spunlace material. The method involves generating rough structure on the surface of material by plasma etching, and then constructing low surface energy surface by spray deposition of PDMS. The optimal process parameters, such as discharge time, discharge power, and spray coating speed, were determined by orthogonal optimization experiments. The effectiveness of plasma etching and PDMS covalent grafting on the surface of materials was demonstrated by the microstructure, elemental composition and infrared spectrum analysis. The anti-adhesive tests showed that the optimized material possessed excellent anti-adhesive properties. Furthermore, the optimized material demonstrated favorable biocompatibility. This research provides insights into constructing hydrophobic surfaces on cellulose-based hydroentangled materials and offers innovative design approaches for the fabrication of anti-adhesive medical dressings.

Key words: surface etching, polydimethylsiloxane, cotton spunlace material, hydrophobic modification, anti-adhesion, medical dressing

中图分类号: 

  • TS195.5

图1

喷涂装置"

表1

L16(43)正交优化试验因素水平"

因子
水平
A
放电时间/min
B
放电功率/W
C
喷涂线速度/(mm·s-1)
1 3 25 1
2 6 50 3
3 9 75 5
4 12 100 7

图2

PTFE模具"

表2

放电时间、放电功率及喷涂线速度正交优化结果分析"

试验编号 A B C 接触角/(°)
1 3 25 1 138.7
2 3 50 3 139.1
3 3 75 5 137.6
4 3 100 7 135.8
5 6 25 3 138.3
6 6 50 1 137.5
7 6 75 7 136.4
8 6 100 5 137.7
9 9 25 5 141.1
10 9 50 7 137.4
11 9 75 1 138.4
12 9 100 3 138.1
13 12 25 7 138.8
14 12 50 5 138.4
15 12 75 3 138.6
16 12 100 1 138.3
K1 137.80 139.27 138.24
K2 137.49 138.10 138.50
K3 138.79 137.75 138.73
K4 138.51 137.47 137.13
极差R 1.29 1.80 1.61

图3

纯棉水刺材料表面形貌"

图4

处理前后纯棉水刺材料的红外谱图"

表3

处理前后纯棉水刺材料元素组成"

元素 不同处理方式的元素含量/%
处理前 刻蚀处理 PDMS处理 优化组合处理
C 32.8 35.9 33.4 31.5
O 24.8 25.7 24.8 25.9
Si 1.4 1.9
Au 42.4 38.4 40.4 40.6

图5

PDMS接枝纯棉水刺材料"

图6

经PDMS喷涂处理纯棉水刺材料的红外谱图"

表4

处理前后纯棉水刺材料的力学性能"

样品处理方式 断裂强力/N 断裂伸长率/%
纵向 横向 纵向 横向
未处理 38.62±0.11 17.61±1.22 69.54±1.83 142.72±4.55
刻蚀处理 42.90±0.86 20.31±1.64 60.98±4.83 130.59±5.00
PDMS处理 19.07±3.02 8.38±0.38 57.81±8.33 111.52±6.05
优化组合处理 19.36±1.02 8.03±0.69 68.89±4.87 104.63±2.23

图7

溶血试验离心后照片"

表5

优化处理前后纯棉水刺材料的动态凝血指数"

时间/min BCI值/%
处理前 优化组合处理
5 83.10 42.95
10 79.05 40.94
30 70.67 25.51
60 56.73 10.38

图8

优化处理前后水刺材料表面血凝块照片"

图9

材料的生物相容性"

表6

处理前后纯棉水刺材料的剥离能"

样品处理方式 纵向剥离能 横向剥离能
未处理 491.4±36.2 471.8±48.4
刻蚀处理 499.6±38.0 494.4±47.7
PDMS处理 400.4±44.1 411.4±44.3
优化组合处理 350.0±29.9 363.1±46.9
[1] WANG H, DUAN W, REN Z, et al. Engineered sandwich-structured composite wound dressings with unidirectional drainage and anti-adhesion supporting accelerated wound healing[J]. Advanced Healthcare Materials, 2023. DOI: 10.1002/adhm.202202685.
[2] LUO Z, JIANG L, XU C, et al. Engineered Janus amphipathic polymeric fiber films with unidirectional drainage and anti-adhesion abilities to accelerate wound healing[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2020.127725.
[3] SHAHID M, MAITI S, ADIVAREKAR R V, et al. Biomaterial based fabrication of superhydrophobic textiles: a review[J]. Materials Today Chemistry, 2022. DOI: 10.1016/j.mtchem.2022.100940.
[4] SUKHANOVA A, BOZROVA S, SOKOLOV P, et al. Dependence of nanoparticle toxicity on their physical and chemical properties[J]. Nanoscale Research Letters, 2018, 13(1): 1-21.
doi: 10.1186/s11671-017-2411-3
[5] SIMSEK B, KARAMAN M. Initiated chemical vapor deposition of poly(hexafluorobutyl acrylate) thin films for superhydrophobic surface modification of nanostructured textile surfaces[J]. Journal of Coatings Technology and Research, 2020, 17(2): 381-391.
doi: 10.1007/s11998-019-00282-7
[6] TIAN N, CHEN K, YU H, et al. Super pressure-resistant superhydrophobic fabrics with real self-cleaning performance[J]. iScience, 2022. DOI: 10.1016/j.isci.2022.104494.
[7] XU Y, WANG C L, QIN S C, et al. Treatment uniformity of atmospheric pressure plasma on flexible and porous material surface: a critical review[J]. Acta Physica Sinica, 2021. DOI: 10.7498/aps.70.20210077.
[8] JAFARI R, ASADOLLAHI S, FARZANEH M. Applications of plasma technology in development of superhydrophobic surfaces[J]. Plasma Chemistry and Plasma Processing, 2012, 33(1): 177-200.
doi: 10.1007/s11090-012-9413-9
[9] YAO M Z, LIU Y, QIN C N, et al. Facile fabrication of hydrophobic cellulose-based organic/inorganic nanomaterial modified with POSS by plasma treat-ment[J]. Carbohydr Polym, 2021. DOI: 10.1016/j.carbpol.2020.117193.
[10] 刘欣宇, 李剑浩, 王震, 等. 复合型无氟聚丙烯酸酯乳液的制备及其防水性能[J]. 纺织学报, 2023, 44(4): 124-131.
LIU Xinyu, LI Jianhao, WANG Zhen, et al. Preparation and waterproof properties of fluorine-free polyacrylate latex composites[J]. Journal of Textile Research, 2023, 44(4): 124-131.
[11] 夏勇, 赵迎, 徐利云, 等. 抗菌防沾污生物防护材料的制备及其性能[J]. 纺织学报, 2023, 44(1): 64-70.
XIA Yong, ZHAO Ying, XU Liyun, et al. Preparation and properties of antibacterial and anti-contamination biological protective materials[J]. Journal of Textile Research, 2023, 44(1): 64-70.
[12] LI Z, MILIONIS A, ZHENG Y, et al. Superhydrophobic hemostatic nanofiber composites for fast clotting and minimal adhesion[J]. Nature Communications, 2019. DOI: 10.1038/s41467-019-13512-8.
[13] KRUMPFER J W, MCCARTHY T J. Rediscovering silicones: "unreactive" silicones react with inorganic surfaces[J]. Langmuir, 2011, 27(18): 11514-11519.
doi: 10.1021/la202583w pmid: 21809882
[14] ANDREWS E H, KAMYAB I. Adhesion of surgical dressings to wounds: a new invitro model[J]. Clinical Materials, 1986, 1(1): 9-21.
doi: 10.1016/S0267-6605(86)80058-0
[15] 欧阳晨曦, 李沁, 王维慈, 等. 小口径人工血管血液相容性[J]. 中国组织工程研究与临床康复, 2008(6): 1119-1123.
OUYANG Chenxi, LI Qin, WANG Weici, et al. Blood compatibility of small-caliber vascular grafts[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008(6): 1119-1123.
[1] 秦益民. 含锌和含铜医用敷料的研究进展[J]. 纺织学报, 2023, 44(05): 213-219.
[2] 乔路阳, 吕巧莉, 胡乾恒, 王成龙, 郑今欢. 改性羰基铁粉制备及其在蓝光固化磁控超疏水薄膜中的应用[J]. 纺织学报, 2022, 43(12): 88-95.
[3] 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8.
[4] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[5] 吴洋, 刘方恬, 曹孟杰, 崔金海, 邓红兵. 生物质纤维医用敷料研究进展[J]. 纺织学报, 2022, 43(03): 8-16.
[6] 王春红, 李明, 龙碧旋, 才英杰, 王利剑, 左祺. 聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能[J]. 纺织学报, 2021, 42(05): 16-22.
[7] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[8] 韩佳蕊, 黄珍珍, 王佳珺, 殷淏, 高晶, 劳继红, 王璐. 医用敷料用柔性金属电极的制备及其细胞毒性分析[J]. 纺织学报, 2020, 41(09): 174-182.
[9] 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190.
[10] 陈千, 廖振, 徐明, 朱亚伟. 等离子体处理对聚四氟乙烯膜粘接性能的影响[J]. 纺织学报, 2020, 41(08): 15-21.
[11] 高晶, 王璐. 前处理工艺对毛/涤织物疏水改性效果的影响[J]. 纺织学报, 2019, 40(09): 91-96.
[12] 秦益民. 壳聚糖纤维的理化性能和生物活性研究进展[J]. 纺织学报, 2019, 40(05): 170-176.
[13] 张博亚 李佳慧 张如全 李建强. 静电纺聚丙烯腈/硫酸铜纳米纤维膜的制备及其性能[J]. 纺织学报, 2018, 39(07): 15-20.
[14] 樊武厚 黄玉华 韩丽娟 蒲宗耀 蒲实 胡于庆. 端羟乙基硅油的合成及其在硅丙乳液制备中应用[J]. 纺织学报, 2016, 37(2): 112-118.
[15] 秦益民 莫岚 朱长俊 胡贤志 申胜标 陈凯. 乙酰化处理对含银甲壳胺纤维性能的影响[J]. 纺织学报, 2015, 36(03): 11-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!