纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 221-230.doi: 10.13475/j.fzxb.20231004901

• 服装工程 • 上一篇    下一篇

冬季运动智能柔性人台关键技术开发

何崟1,2, 邓凌1,2, 林美霞1,2, 李倩倩1,2, 肖爽1,2, 刘皓1,2, 刘莉3()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 智能可穿戴电子纺织品研究所, 天津 300387
    3.北京服装学院 服装艺术与工程学院, 北京 100029
  • 收稿日期:2023-10-16 修回日期:2023-11-22 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 刘莉(1975—),女,教授,博士。主要研究方向为服装舒适性与功能设计。E-mail:fzyll@bift.edu.cn
  • 作者简介:何崟(1985—),女,副教授,博士。主要研究方向为智能纺织品与服装、可穿戴传感材料及电子器件。
  • 基金资助:
    国家重点研发计划“科技冬奥”重点专项(2019YFF0302105);国家自然科学基金项目(52203276);中国博士后基金项目(2021M691699)

Key technology development of intelligent and flexible mannequin for winter sports

HE Yin1,2, DENG Ling1,2, LIN Meixia1,2, LI Qianqian1,2, XIAO Shuang1,2, LIU Hao1,2, LIU Li3()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, China
    3. School of Fashion, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2023-10-16 Revised:2023-11-22 Published:2024-02-15 Online:2024-03-29

摘要:

为精确获得运动姿态下服装对运动员整体和局部关键部位的减阻效果,基于运动员冬季运动动态姿势的三维人体数据,合理构建人台硬质内壳与柔性皮肤层的结构,并结合空气动力学等方法设计薄膜压电传感器的置入点位,为人台搭建完整的传感系统,开发了一款冬季运动智能柔性人台,并对该柔性人台进行了实际的风洞测试。结果表明,该人台可实现多点压力信号实时同步采集,不仅可得到人体局部关键部位的具体阻力数据,还可模拟测试速滑运动员在运动情况下穿着不同材料或不同结构设计的竞赛服装的减阻效果,测试竞赛服装不同部位的减阻情况。智能人台发挥了柔性传感器在服装减阻结构设计中的应用价值,使服装减阻测试更为简单和精确。

关键词: 柔性人台, 柔性传感器, 服装减阻, 速滑服, 冬季运动

Abstract:

Objective The development of winter speed competitive sports apparel requires accurate measurement of the drag force on different parts of the apparel during the movement. In the traditional drag-reducing apparel testing session, a rigid mannequin is usually used to wear the apparel for wind tunnel air resistance testing. The combination of a flexible mannequin that simulates the mechanical properties of human skin and thin-film piezoelectric sensors can be used to obtain the drag reduction effect of the garment on the overall and localized critical parts of the athlete during the sports posture.

Method Based on the three-dimensional human body data of athletes' dynamic posture in winter sports, the mannequin model was constructed by using reverse engineering software, the structure of rigid inner shell and flexible skin layer of the platform was set up, and the model of the platform was divided into five parts for the convenience of putting on and taking off of the garment, and the placement points of thin-film piezoelectric sensors were designed by combining with the methods of aerodynamic dynamics, so as to build up the complete sensing system for the platform, and develop an intelligent and flexible mannequin for winter sports.

Results Comparative tests were carried out on the flexible mannequin in a wind tunnel with three different angles. The overall pressures measured for the rigid mannequin and the flexible mannequin under the same wind speeds indicated differences in the test results between the two mannequins. The flexible mannequin exhibited significantly lower pressure values at each point when the mannequins were clad, highlighting its noticeable drag reduction effect on the human body when wearing speed skating apparel. When three different sets of speed skating apparel were tested under the same wind speed conditions, the pressure values at the same location were close between speed skating apparels 1 and 2, despite their different sizes. This suggested that the mannequin was able distinguish between different degrees of deformation in the flexible skin layer. Additionally, when comparing speed skating apparels 1 and 3, which have different styles but the same size, significant differences in pressure values at different locations on the mannequin were visually observable. This demonstrates that the flexible mannequin can differentiate inconsistent structural designs in different parts of the apparel, facilitating comparative analysis and optimization of detailed drag reduction designs.

Conclusion Based on the flexible sensing technology, an intelligent flexible mannequin for winter speed skating sportswear drag reduction performance testing has been developed, which consists of a rigid inner shell and a flexible epidermal layer, and integrates multiple flexible pressure sensors to directly obtain the wind resistance pressure data endured by each part of the flexible mannequin. The test results show that the mannequin can realize real-time synchronous acquisition of multi-point pressure signals, which not only get the specific resistance data of local key parts of the human body, but also simulate and test the resistance reduction effect of speed skaters wearing different materials or different structural design of the competition garments under the sports conditions. The pressure signals can also be used to evaluate the resistance reduction of different parts of the competition garments. The intelligent mannequin plays the application value of flexible sensors in the design of clothing resistance reduction structure, makes the clothing resistance reduction test simpler and more accurate, and is more suitable for the pressure test field of winter sports competition clothing.

Key words: flexible mannequin, flexible sensor, clothing drag reduction, speed skating suit, winter spor

中图分类号: 

  • TS941

图1

智能柔性人台分割模型示意图"

图2

边界层分离时气流状态"

表1

传感器点位分区及位置说明"

部位 点位说明
右大腿根部 前中心点(T1)、外侧点(T2)
右大腿中部 内斜向点(T3)、外斜向点(T4)、内侧点(T5)、外侧点(T6)
右膝盖 前中心点(K1)、外斜向点(K2)
右小腿 前中心点(S1)、内斜向点(S2)、外斜向点(S3)
右手臂 前中心点(A1)、内斜向点(A2)、后中心点(A3)
右肩部 前中心点
头部 前中心点

图3

速度滑冰人台测试点位示意图"

图4

柔性压电薄膜传感器置入人台后的剖面结构"

图5

传统硬质人台和智能柔性人台不同风速下的压力对比图"

图6

人台裸露状态下风洞测试"

图7

柔性人台穿着速滑服风速测试"

图8

柔性人台2种状态下不同部位的压力对比图"

图9

速滑服1和速滑服2不同部位的压力对比图"

图10

速滑服1和速滑服3不同部位的压力对比图"

[1] 倪维广, 李美花, 魏书涛. 冬季运动项目服装的专业功能体现[J]. 新体育, 2021(8):29-35.
NI Weiguang, LI Meihua, WEI Shutao. Embodiment of professional function of winter sports program clo-thing[J]. New Sports, 2021(8):29-35.
[2] BROWNLIE Len. Aerodynamic drag reduction in winter sports: the quest for "free speed"[J]. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2020, 235(4): 345-404.
[3] 曹子威. 速度滑冰专项技术动作特征及训练手段的研究[D]. 西安: 西安体育学院, 2022:4-5.
CAO Ziwei. Research on the characteristics and training means of specialized technical movements of speed skating[D]. Xi'an: Xi'an Institute of Physical Education and Sports, 2022:4-5.
[4] 沈梦, 胡紫婷, 刘莉. 基于空气动力学的高山滑雪竞赛服减阻分析[J]. 冰雪运动, 2019, 41(4):16-19.
SHEN Meng, HU Ziting, LIU Li. Analysis of drag reduction of alpine ski race suits based on aerody-namics[J]. Ice and Snow Sports, 2019, 41(4):16-19.
[5] 姚育成, 李万平, 李良军. 高雷诺数情况下钝体绕流的数值模拟[J]. 华中科技大学学报(自然科学版), 2003(2):106-108.
YAO Yucheng, LI Wanping, LI Liangjun. Numerical simulation of blunt body flow at high reynolds number[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2003(2):106-108.
[6] 潘容易. 服装用软体人台及柔性材料研究进展[J]. 大舞台, 2011(12):288-289.
PAN Rongyi. Research progress of soft mannequins and flexible materials for clothing[J]. Big Stage, 2011(12): 288-289.
[7] LI Qing, SUN Guangwu, CHEN Yu, et al. Fabricated leg mannequin for the pressure measurement of compression stockings[J]. Textile Research Journal. 2022, 92(19-20):3500-3510.
doi: 10.1177/00405175221083216
[8] 郑浩, 赵雅捷, 胡紫庭, 等. 高性能服装与材料切中冬奥会刚需[J]. 纺织科学研究, 2019(5):23-25.
ZHENG Hao, ZHAO Yajie, HU Ziting, et al. High-performance apparel and materials hit the immediate needs of the winter olympics[J]. Textile Science Research, 2019(5):23-25.
[9] 毕研旬. 服装压测试用软性关节可调节人台的研究[D]. 上海: 东华大学, 2009:59-60.
BI Yanxun. Research on the soft joint adjustable human platform for garment pressure test[D]. Shanghai: Donghua University, 2009: 59-60.
[10] 方方, 王子英. 传感器嵌入式服装压力测试用仿真软体假人的构建方法:201410742521.4[P]. 2014-12-05.
FANG Fang, WANG Ziying. Construction method of simulated soft dummy for sensor-embedded garment stress test: 201410742521. 4[P]. 2014-12-05.
[11] 高淑敏. 女子连体短道速滑服的功能结构设计[D]. 北京: 北京服装学院, 2019:50-51.
GAO Shumin. Functional structure design of women's one-piece short track speed skating suit[D]. Beijing: Beijing Institute of Fashion Technology, 2019:50-51.
[12] 林美霞. 碳化气凝胶柔性传感器及智能柔性人台开发与应用[D]. 天津: 天津工业大学, 2022:30-33.
LIN Meixia. Development and application of carbonized aerogel flexible sensor and intelligent flexible human platform[D]. Tianjin: Tiangong University, 2022:30-33.
[13] 天津工业大学. 风洞测试短道速滑人台及其测试位置确定方法:中国,202111103445.9[P]. 2021-12-03.
Tiangong University. Wind tunnel test short track speed skating table and its test position determination method: China, CN202111103445.9[P]. 2021-12-03.
[14] 高淑敏, 王永进. 基于皮肤形变的短道速滑服结构优化设计[J]. 北京服装学院学报(自然科学版), 2020, 40(3):21-28.
GAO Shumin, WANG Yongjin. Optimized design of short track speed skating suit based on skin deforma-tion[J]. Journal of Beijing Institute of Fashion Techno-logy (Natural Science Edition), 2020, 40(3): 21-28.
[1] 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163.
[2] 赵博宇, 李露红, 丛洪莲. 棉/Ti3C2导电纱制备及其电容式压力传感器的性能[J]. 纺织学报, 2022, 43(07): 47-54.
[3] 荣凯, 樊威, 王琪, 张聪, 于洋. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(09): 10-16.
[4] 肖渊, 李红英, 李倩, 张威, 杨鹏程. 棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(05): 79-83.
[5] 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45.
[6] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[7] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[8] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[9] 贾高鹏, 宋小红, 李莹, 刘晓丹, 潘雪茹. 铜镍金属涂层机织物拉伸过程中电流的响应[J]. 纺织学报, 2019, 40(10): 68-72.
[10] 李思明, 吴官正, 胡雨洁, 方镁淇, 贺录祥, 贺燕, 肖学良. 压力分布监测袜的制备及其传感性能[J]. 纺织学报, 2019, 40(07): 138-144.
[11] 孙悦 范杰 王亮 刘雍. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39(12): 131-138.
[12] 蔡倩文 王金凤 陈慰来. 纬编针织柔性传感器结构及其导电性能[J]. 纺织学报, 2016, 37(06): 48-53.
[13] 王金凤 龙海如. 线圈转移对导电弹性针织柔性传感器的电-力学性能影响[J]. 纺织学报, 2013, 34(7): 62-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!