纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 1-10.doi: 10.13475/j.fzxb.20221106101
• 纤维材料 • 下一篇
YANG Qi1,2, DENG Nanping1,2(), CHENG Bowen2, KANG Weimin1,2
摘要:
为解决应用于全固态锂金属电池中固态有机电解质离子电导率较低和力学性能较弱的问题,采用静电纺丝技术制备了树枝状磺化聚醚砜(SPES)纳米纤维膜,将其与聚氧化乙烯(PEO)结合制备复合固态电解质,并应用于全固态锂金属电池中。探讨了纺丝工艺对纳米纤维形貌的影响,在最佳的静电纺丝工艺参数下,研究了SPES纳米纤维膜对复合固态电解质结晶度、离子电导率、力学性能以及电化学性能的影响。结果表明: 在四丁基六氟磷酸铵质量分数为2%,静电纺丝电压为30 kV,接收距离为15 cm时,制备的树枝状SPES纳米纤维膜具有最好的形貌,将PEO浇筑在该纳米纤维膜上获得的复合固态电解质其离子电导率为8.13×10-5 S/cm(30 ℃),断裂强度为 5.1 MPa, 且可使对称电池在0.1 mA·h/cm2下稳定循环198 h,使LiFePO4/Li电池在循环400圈后仍保持着128.6 mA·h/g的放电比容量;SPES纳米纤维膜因破坏PEO的结晶区且能构成三维离子传输路径,不仅提高了复合固态电解质的离子电导率,还使复合固态电解质具有优异的力学强度,可满足高性能全固态锂金属电池的应用需求。
中图分类号:
[1] |
CHEN R, LI Q, YU X, et al. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces[J]. Chemical Reviews, 2020, 120(14): 6820-6877.
doi: 10.1021/acs.chemrev.9b00268 pmid: 31763824 |
[2] |
WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224.
doi: 10.1016/j.jpowsour.2012.02.038 |
[3] | LI Y, ZHANG B, YUAN Q. A comparative study of long and short GRBs: II: a multiwavelength method to distinguish type II (massive star) and type I (compact star) GRBs[J]. The Astrophysical Journal, 2020. DOI: 10.3847/1538-4357/ab96b8. |
[4] | 宋鑫, 高志浩, 骆林, 等. 全固态锂电池有机-无机复合电解质研究进展[J]. 复合材料学报, 2023, 40(4): 1857-1878. |
SONG Xin, GAO Zhihao, LUO Lin, et al. Research progress of organic-inorganic composite electrolytes for all-solid-state lithium batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1857-1878. | |
[5] |
ZHU L, ZHU P, FANG Q, et al. A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery[J]. Electrochimica Acta, 2018, 292: 718-726.
doi: 10.1016/j.electacta.2018.10.005 |
[6] |
RATNER M A, SHRIVER D F. Ion transport in solvent-free polymers[J]. Chemical Reviews, 1988, 88: 109-124.
doi: 10.1021/cr00083a006 |
[7] | LI Z, HUANG H M, ZHU J K, et al. Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 784-791. |
[8] |
PAN Q, ZHENG Y, KOTA S, et al. 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries[J]. Nanoscale Advances, 2019, 1(1): 395-402.
doi: 10.1039/c8na00206a pmid: 36132461 |
[9] |
WANG W, YI E, FICI A J, et al. Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles[J]. The Journal of Physical Chemistry C, 2017, 121(5): 2563-2573.
doi: 10.1021/acs.jpcc.6b11136 |
[10] | LIU L, LYU J, MO J, et al. Comprehensively-upgraded polymer electrolytes by multifunctional aramid nanofibers for stable all-solid-state Li-ion batteries[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2019.104398. |
[11] | WANG G, HE P, FAN L Z. Asymmetric polymer electrolyte constructed by metal-organic framework for solid-state, dendrite-free lithium metal battery[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202007198. |
[12] |
TIAN L, LIU Y, SU Z, et al. A lithiated organic nanofiber-reinforced composite polymer electrolyte enabling Li-ion conduction highways for solid-state lithium metal batteries[J]. Journal of Materials Chemistry A, 2021, 9(42): 23882-23890.
doi: 10.1039/D1TA06269G |
[13] | LI D, CHEN L, WANG T, et al. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7069-7078. |
[14] |
ZENG Q, WANG J, LI X, et al. Cross-linked chains of metal-organic framework afford continuous ion transport in solid batteries[J]. ACS Energy Letters, 2021, 6(7): 2434-2441.
doi: 10.1021/acsenergylett.1c00583 |
[15] | GAO L, LI J, JU J, et al. Designing of root-soil-like polyethylene oxide-based composite electrolyte for dendrite-free and long-cycling all-solid-state lithium metal batteries[J]. Chemical Engineering Journal, 2020.DOI:10.1016/j.cej.2020.124478. |
[16] |
GUO Y, WU S, HE Y B, et al. Solid-state lithium batteries: safety and prospects[J]. eScience, 2022, 2(2): 138-163.
doi: 10.1016/j.esci.2022.02.008 |
[17] |
巩桂芬, 徐阿文, 邹明贵, 等. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
doi: 10.11868/j.issn.1001-4381.2018.001320 |
GONG Guifen, XU Awen, ZOU Minggui, et al. Preparation and electrochemical properties of EVOH-SO3Li/poly(vinylidene fluoride-hexafluoropropylene)/hydroxyapatite lithium-ion battery separator[J]. Journal of Materials Engineering, 2020, 48(5): 75-82.
doi: 10.11868/j.issn.1001-4381.2018.001320 |
|
[18] |
ZHU P, YAN C, DIRICAN M, et al. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2018, 6(10): 4279-4285.
doi: 10.1039/C7TA10517G |
[19] |
LEE J C, HAYES B K, LOVIBOND P F. Peak shift and rules in human generalization[J]. Journal of Experimental Psychology-Learning Memory and Cognition, 2018, 44(12): 1955-1970.
doi: 10.1037/xlm0000558 |
[20] | WAN Z, LEI D, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201805301. |
[21] |
WATANABE T, INAFUNE Y, TANAKA M, et al. Development of all-solid-state battery based on lithium ion conductive polymer nanofiber framework[J]. Journal of Power Sources, 2019, 423: 255-262.
doi: 10.1016/j.jpowsour.2019.03.066 |
[1] | 赵美奇, 陈莉, 钱现, 李晓娜, 杜迅. 用于铜离子检测的静电纺纤维膜制备及其性能[J]. 纺织学报, 2024, 45(03): 11-18. |
[2] | 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20. |
[3] | 周歆如, 范梦晶, 岳欣琰, 洪剑寒, 韩潇. 导电微纳纤维复合纱的制备及其气敏特性[J]. 纺织学报, 2024, 45(02): 52-58. |
[4] | 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55. |
[5] | 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64. |
[6] | 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16. |
[7] | 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25. |
[8] | 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26. |
[9] | 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224. |
[10] | 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35. |
[11] | 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73. |
[12] | 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23. |
[13] | 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204. |
[14] | 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10. |
[15] | 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19. |
|