纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 114-121.doi: 10.13475/j.fzxb.20230202401

• 染整工程 • 上一篇    下一篇

壳聚糖荧光防伪印花涂料的制备及其应用性能

李曼丽1,2, 季志浩3, 龙柱1, 王益峰2, 金恩琪3()   

  1. 1.江南大学 纺织科学与工程学院, 江苏 无锡 214122
    2.浙江富润数字科技股份有限公司, 浙江 绍兴 311800
    3.绍兴文理学院 浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
  • 收稿日期:2023-02-13 修回日期:2023-12-22 出版日期:2024-03-15 发布日期:2024-04-15
  • 通讯作者: 金恩琪
  • 作者简介:李曼丽(1983—),女,副教授,博士。主要研究方向为纺织品印花涂料的制备技术。
  • 基金资助:
    浙江省公益技术研究计划项目(LGG21E030005);浙江省公益技术研究计划项目(LGG22E030002);浙江省清洁染整技术研究重点实验室开放基金项目(QJRZ1902);浙江省博士后科研择优资助项目(276089)

Preparation and application properties of chitosan fluorescent anti-counterfeiting printing coating

LI Manli1,2, JI Zhihao3, LONG Zhu1, WANG Yifeng2, JIN Enqi3()   

  1. 1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Zhejiang Furun Co., Ltd., Shaoxing, Zhejiang 311800, China
    3. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang 312000, China
  • Received:2023-02-13 Revised:2023-12-22 Published:2024-03-15 Online:2024-04-15
  • Contact: JIN Enqi

摘要:

为解决纺织品印染中常用有机荧光防伪印花涂料发光强度低、耐光漂白性弱等问题,以壳聚糖(CS)为生物基高分子涂料代表,采用不同物质的量的聚集诱导发光(AIE)分子四苯基乙烯(TPE)对CS进行荧光标记,制备出一系列具有不同标记率的TPE-CS荧光涂料。测定了TPE-CS防伪涂料的荧光强度、耐光漂白性、热稳定性等,并对棉织物进行防伪印花。结果表明:与目前较常用的聚集诱导荧光猝灭(ACQ)分子标记CS荧光涂料相比,TPE-CS显示出优异的荧光发射性能和耐光漂白性能;当TPE-CS的标记率仅为1.43 %(摩尔分数)时,该防伪涂料溶液(1 000 mg/L)的相对荧光强度超过1 090;溶液在强紫外光下曝露1 h后,相对荧光强度仍能达到光漂白前的94.9%。

关键词: 四苯基乙烯, 壳聚糖, 荧光涂料, 印花涂料, 荧光发射性能, 耐光漂白性能, 热稳定性, 荧光防伪印花

Abstract:

Objective In order to tackle the low fluorescence intensity and photobleaching resistance of organic fluorescent anti-counterfeiting printing coatings commonly used in textile printing and dyeing industry, aggregation-induced emission (AIE) fluorophore-tetraphenyl ethylene (TPE) labeled chitosan (CS) fluorescent anti-counterfeiting coatings were prepared and their application properties were investigated.

Method The typical AIE monomer-tetraphenyl ethylene-isothiocyanate (TPE-ITC) was synthesized initially. The TPE-ITC product was characterized by Fourier transform infrared spectroscopy (FT-IR) and MALDI-TOF mass spectrometry (MS). The study took CS as the representative of bio-based polymer paints, labeled different amounts of TPE fluorophores onto CS using the TPE-ITC as fluorescent monomers, and prepared a series of TPE-CS fluorescent paints with different degrees of labeling (DL). The series of TPE-CS products were characterized by FT-IR and 1H-nuclear magnetic resonance (1H-NMR) to confirm the labeling of TPE fluorophores. Main application properties of the TPE-CS paints, such as fluorescence intensity, photobleaching resistance and thermal stability, were evaluated. Anti-counterfeit printing on cotton fabric was carried out using the TPE-CS coatings and the common color fastness of the printed fabric was tested systematically according to the national standards.

Results FT-IR and MS spectra confirmed that the synthetic product was the expected AIE fluorescent monomer TPE-ITC. FT-IR and 1H-NMR spectra proved that TPE fluorophores were successfully grafted onto the molecular chain of CS. The higher was the feed concentration of TPE-ITC monomers, the higher was the DL of TPE-CS. TGA thermograms illustrated that TPE-CS (DL of 2.56%) had nearly the same thermal stability with unlabeled CS. With the increase in the DL, the fluorescence intensity of TPE-CS showed a gradual increase, reflecting its unique AIE advantage. The TPE-CS coating was colorless and thus its printing pattern on the fabric had good concealment in the sunlight. On the contrary, because of the high fluorescence quantum yield of the AIE fluorophores, the TPE-CS coating was found to emit blue fluorescence under ultraviolet light, and the printing pattern on the fabric could be easily recognized with the naked eye. With the increase in the DL of the TPE-CS, the fluorescent intensity of the printing patterns on the fabric kept increasing. Compared with aggregation caused quenching (ACQ) fluorophore labeled CS, the anti-counterfeiting TPE-CS coatings exhibited superior fluorescence intensity and photobleaching resistance. Even if the DL of TPE-CS was only 1.43%, the relative fluorescence intensity of the anti-counterfeit coating solution (1 000 mg/L) could exceed 1 090. After exposure to high-intensity ultraviolet light for 1 h, the relative fluorescence intensity of the solution still reached 94.9% of that before photobleaching. The common color fastness ratings for the fabric printed by TPE-CS 3# were all above level 3.

Conclusion Labeling AIE fluorophore TPE onto CS macromolecule is one of the effective methods to prepare high-performance organic polymer fluorescent anti-counterfeiting printing paint. The high heat stability of CS is not affected by the labeling of TPE group. The TPE-CS anti-counterfeiting coating within the appropriate range of the DL is sufficient to withstand the baking temperature during printing. In addition, the fluorescence emission intensity of TPE-CS is much higher than that of F-CS after UV photobleaching with the same time and intensity. The use of TPE-CS fluorescent anti-counterfeiting coatings can solve the problems of the ones labeled by ACQ fluorophore, such as low fluorescence emission intensity and weak photobleaching resistance. Taking the application properties and preparation cost into serious consideration, TPE-CS with the DL of 1.43% shows good fluorescence emission performance and high photobleaching resistance and thus the DL value is appropriate. The fabric printed by the TPE-CS coating possesses high fastness to sunlight. Therefore, it can compensate for the lack of sunlight resistance of ACQ fluorescent paints and is suitable for long-term outdoor use. The AIE fluorophore labeled bio-based polymer has great potential to be widely used in the field of textile fluorescent anti-counterfeiting printing as a kind of environment-friendly coating with extensive sources and excellent performance. The preparation and application of TPE-CS fluorescent printing coating can overcome the defects of commonly used fluorescent paints and can be used as an important reference for the preparation of other kinds of AIE fluorophores labeled bio-based fluorescent coatings, such as starch, cellulose, and protein.

Key words: tetraphenyl ethylene, chitosan, fluorescent coating, printing coating, fluorescence emission property, photobleaching resistance, thermal stability, fluorescent anti-counterfeiting printing

中图分类号: 

  • TS194.2

图1

TPE-ITC制备示意图"

图2

TPE-CS制备示意图"

图3

TPE-ITC的红外光谱图"

图4

TPE-ITC的质谱图"

图5

未标记CS及TPE-CS的红外光谱图"

图6

未标记CS及TPE-CS的核磁共振氢谱图"

表1

不同荧光单体投料浓度下TPE-CS的标记率"

TPE-CS
编号
荧光单体占CS
结构单元的
摩尔分数/%
吸光度 TPE的质量
浓度/
(g·L-1)
标记率/
%
1# 0.64 0.339 0.006 6 0.27
2# 1.28 0.503 0.013 2 0.55
3# 2.56 1.016 0.033 8 1.43
4# 5.12 1.640 0.058 8 2.56

图7

未标记CS和TPE-CS 4#的热重曲线"

图8

不同标记率TPE-CS溶液的荧光光谱图(λex=328 nm)"

图9

经TPE-CS防伪印花后棉织物在日光和紫外光下的照片"

表2

Color fastness of fabric printed by TPE-CS anti-counterfeiting coating级"

耐皂洗色牢度 耐摩擦色牢度 耐日晒色
牢度
褪色 白布沾色 湿
4 4~5 3~4 3 4~5

图10

光漂白前后TPE-CS 3#溶液的荧光光谱图(λex=328 nm)"

图11

光漂白前后F-CS溶液的荧光光谱图(λex=438 nm)"

[1] ZHANG M X, CHEN J C, WANG M L, et al. Electron beam-induced preparation of aie non-woven fabric with excellent fluorescence durability[J]. Applied Surface Science, 2021. DOI: 10.1016/j.apsusc.2020.148382.
[2] PRAVEEN V K, VEDHANARAYANAN B, MAL A, et al. Self-assembled extended π-systems for sensing and security applications[J]. Accounts of Chemical Research, 2020, 53(2): 496-507.
doi: 10.1021/acs.accounts.9b00580 pmid: 32027125
[3] BASTA A, MISSORI M, GIRGIS A S, et al. Novel fluorescent security marker: part II: application of novel 6-alkoxy-2-amino-3,5-pyridinedicarbonitrile nanoparticle in safety paper[J]. Accounts of Chemical Research, 2020, 53(2): 496-507.
doi: 10.1021/acs.accounts.9b00580
[4] 汪娟丽, 李玉虎. 荧光防伪涂料的制备及其在陶质文物标识中的应用[J]. 涂料工业, 2017, 47(7): 40-44.
WANG Juanli, LI Yuhu. Preparation of fluorescent anti-counterfeit coatings and its application in marks of ceramic cultural relics[J]. Paint & Coatings Industry, 2017, 47(7): 40-44.
[5] HU W T, LI T, LIU X, et al. 1550 nm pumped upconversion chromaticity modulation in Er3+ doped double perovskite LiYMgWO6 for anti-counterfeiting[J]. Journal of Alloys and Compounds, 2020. DOI: 10.1016/j.jallcom.2019.152933.
[6] WANG Z K, CHEN S J, LAM J W Y, et al. Long-term fluorescent cellular tracing by the aggregates of AIE bioconjugates[J]. Journal of the American Chemical Society, 2013, 135(22): 8238-8245.
doi: 10.1021/ja312581r pmid: 23668387
[7] SU J, GAO Y, NI S N, et al. A safer and cleaner process for recovering thorium and rare earth elements from radioactive waste residue[J]. Journal of Hazardous Materials, 2021. DOI: 10.1016/j.jhazmat.2020.124654.
[8] IBRAHIM M E, ORABI A H, FALILA N I, et al. Processing of the mineralized black mica for the recovery of uranium, rare earth elements, niobium, and tantalum[J]. Hydrometallurgy, 2020. DOI: 10.1016/j.hydromet.2020.105474.
[9] LUO J D, XIE Z L, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenyl-silole[J]. Chemical Communications, 2001, 18: 1740-1741.
[10] 王双双, 季志浩, 盛国栋, 等. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(9): 156-166.
WANG Shuangshuang, JI Zhihao, SHENG Guodong, et al. Dye and heavy metal adsorption performance of zero-valent iron/grapheme oxide blend absorbent[J]. Journal of Textile Research, 2022, 43(9): 156-166.
[11] JIN E Q, WANG Z K, LI M L, et al. Fluorescent sizing agents based on aggregation-induced emission effect for accurate evaluation of permeability and coating property[J]. Fibers and Polymers, 2021, 22(5): 1218-1227.
doi: 10.1007/s12221-021-0452-9
[12] RUBINSON K A, RUBINSON J F. Contemporary instrumental analysis[M]. Beijing: Science Press, 2003:467-468,484-485.
[13] KEMP W. Qualitative organic analysis: spectrochemical techniques[M]. 2nd ed. London: McGraw-Hill Book Company (UK) Limited, 1986:46-47,126-129.
[14] 张清峰, 姜子涛, 郑国栋. 异硫氰酸酯-β-环糊精微胶囊的制备及其稳定性研究[J]. 现代食品科技, 2012, 28(8): 979-981, 985.
ZHANG Qingfeng, JIANG Zitao, ZHENG Guodong. Preparation, characterization and stability of allyl isothiocyanate-β-cyclodextrin microcapsules[J]. Modern Food Science and Technology, 2012, 28(8): 979-981, 985.
[15] 潘虹, 赵涛. 壳聚糖改性及其在抗菌方面的应用[J]. 纺织学报, 2011, 32(2): 96-101.
PAN Hong, ZHAO Tao. Antibacterial property of fabric treated with a fiber-reactive chitosan derivative[J]. Journal of Textile Research, 2011, 32(2): 96-101.
[16] JIN E Q, WU M J, WANG S S, et al. Preparation and application performance of graft-quaternization double modified chitosan electrospun antibacterial nanofibers[J]. Materials Today Communications, 2022. DOI: 10.1016/j.mtcomm.2022.103712.
[17] 贾园, 杨婷婷, 杨菊香, 等. 聚集诱导发光聚合物的制备及应用研究进展[J]. 高分子材料科学与工程, 2022, 38(6): 161-169.
JIA Yuan, YANG Tingting, YANG Juxiang, et al. Progress in preparation and application of polymers with aggregation induced emission characteristics[J]. Polymer Materials Science and Engineering, 2022, 38(6): 161-169.
[1] 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113.
[2] 李平, 朱平, 刘云. 壳聚糖基膨胀阻燃涤纶/棉混纺织物的制备及其性能[J]. 纺织学报, 2024, 45(02): 162-170.
[3] 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188.
[4] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[5] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[6] 钱晨, 黄博翔, 李永强, 万军民, 傅雅琴. 增强纤维用上浆剂的耐高温化改性研究进展[J]. 纺织学报, 2023, 44(09): 232-242.
[7] 邵彦峥, 孙将皓, 魏春艳, 吕丽华. 棉秆皮微晶纤维素/改性壳聚糖吸附纤维制备与性能[J]. 纺织学报, 2023, 44(08): 18-25.
[8] 狄友波, 陈燮阳, 阎智锋, 殷轩, 邱纯利, 马伟良, 张向兵. 壳聚糖-聚乙烯醇协同对籽用大麻浆粕铁离子的脱除[J]. 纺织学报, 2023, 44(06): 175-182.
[9] 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76.
[10] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[11] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[12] 赵波波, 王亮, 李敬毓, 万刚, 夏兆鹏, 刘雍. 六次甲基四胺交联酚醛纤维的制备及其性能[J]. 纺织学报, 2022, 43(05): 57-62.
[13] 王晨玫孜, 王玲, 张庆乐, 王颖, 夏鑫. 复合水凝胶非织造布保鲜材料的制备及其性能[J]. 纺织学报, 2022, 43(03): 132-138.
[14] 成悦, 胡颖捷, 付译鋆, 李大伟, 张伟. 抗菌止血非织造弹性绷带的制备及其性能[J]. 纺织学报, 2022, 43(03): 31-37.
[15] 张涛, 王富平, 陈国宝, 吴基玉, 庞亚妮, 陈忠敏. 壳聚糖基抑菌凝胶剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 71-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!