纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 122-128.doi: 10.13475/j.fzxb.20221104501
CHEN Kun1, XU Jingying1, ZHENG Yiqian1, LI Jialin2(), HONG Xinghua1
摘要:
为探究组织结构与丝网印刷次数对蚕丝织物导电性、耐水洗性以及电热性能的影响,设计缎纹组织、斜纹组织、重纬组织3种结构,通过丝网印刷工艺制备氧化石墨烯(GO)改性蚕丝织物,经过原位还原制得还原氧化石墨烯(RGO)改性导电蚕丝织物。借助扫描电子显微镜和X射线衍射仪对RGO改性蚕丝织物进行表观形态观察与晶体结构表征,分析了RGO改性蚕丝织物的导电性、耐水洗性和电热性能。结果表明:随着丝网印刷次数的增加,织物的电阻率逐渐减小;相同丝网印刷次数下电阻率最小的为RGO改性重纬蚕丝织物,经9次水洗后,丝网印刷5次所得RGO改性缎纹、斜纹、重纬蚕丝织物的电阻率分别增大了0.710、0.472、0.308 kΩ·cm;相比RGO改性斜纹和重纬蚕丝织物,RGO改性缎纹蚕丝织物具有较好的电热性能,在0.025 A的恒定电流下以10 ℃/s的升温速率达到96 ℃的饱和温度。通过丝网印刷工艺制备的RGO改性蚕丝织物在智能可穿戴纺织品领域具有良好应用潜力。
中图分类号:
[1] | RODES-CARBONELL A M, FERRI J, GARCIA-BREIJO E, et al. Influence of structure and composition of woven fabrics on the conductivity of flexography printed electronics[J]. Polymers, 2021.DOI:103390/polym13183165. |
[2] | LEE J, LLERENA ZAMBRANO B, WOO J, et al. Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: materials, fabrications, and applications[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201902532. |
[3] | WANG H, LI S, WANG Y, et al. Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201908214. |
[4] |
ZHANG M, ZHAO M, JIAN M, et al. Printable smart pattern for multifunctional energy-management e-textile[J]. Matter, 2019, 1(1): 168-79.
doi: 10.1016/j.matt.2019.02.003 |
[5] |
FU Y, CAI X, WU H, et al. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage[J]. Adv Mater, 2012, 24(42): 5713-5718.
doi: 10.1002/adma.v24.42 |
[6] |
YANG C, JIANG Q, LI W, et al. Ultrafine Pt nanoparticle-decorated 3D hybrid architectures built from reduced graphene oxide and MXene nanosheet for methanol oxidation[J]. Chemistry of Materials, 2019, 31(22): 9277-9287.
doi: 10.1021/acs.chemmater.9b02115 |
[7] | 张勇, 陆浩杰, 梁晓平, 等. 蚕丝基智能纤维及织物:潜力、现状与未来展望[J]. 物理化学学报, 2022, 38(9):64-79. |
ZHANG Yong, LU Haojie, LIANG Xiaoping, et al. Silk materials for intelligent fibers and textiles: potential, progress and future perspective[J]. Acta Physico-Chimica Sinica, 2022, 38(9):64-79. | |
[8] | YU R F, ZHU C Y, WAN J M, et al. Review of graphene-based textile strain sensors, with emphasis on structure activity relationship[J]. Polymers, 2021. DOI: 10.3390/polym13010151. |
[9] |
HONG X H, YU R F, HOU M, et al. Smart fabric strain sensor comprising reduced graphene oxide with structure-based negative piezoresistivity[J]. Journal of Materials Science, 2021, 56: 16946-16962.
doi: 10.1007/s10853-021-06365-4 |
[10] |
ZHANG S, LIU H, YANG S, et al. Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer[J]. ACS Appl Mater Interfaces, 2019, 11(11): 10922-10932.
doi: 10.1021/acsami.9b00900 |
[11] |
LIU H, LI Q, ZHANG S, et al. Electrically conductive polymer composites for smart flexible strain sensors: a critical review[J]. Journal of Materials Chemistry C, 2018, 6(45): 12121-12141.
doi: 10.1039/C8TC04079F |
[12] |
XIE X, ZHAO M Q, ANASORI B, et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices[J]. Nano Energy, 2016, 26: 513-523.
doi: 10.1016/j.nanoen.2016.06.005 |
[13] |
HUANG L Z, YUAN Q, JI X X, et al. Multifunctional MXene-decorated cotton fabric with different weaves, outstanding photothermal effect, and rapid response[J]. Cellulose, 2022, 29(12): 6997-7010.
doi: 10.1007/s10570-022-04704-5 |
[14] | 李冰, 盖国平, 郭蔚, 等. 鲜茧与干茧生丝的结构与性能比较及其鉴别方法[J]. 纺织学报, 2019, 40(3):32-38. |
LI Bing, GAI Guoping, GUO Wei, et al. Comparison between structure and performance of fresh cocoon raw silk and dry cocoon raw silk and identification method thereof[J]. Journal of Textile Research, 2019, 40(3):32-38. | |
[15] |
JI Y, CHEN G, XING T. Rational design and preparation of flame retardant silk fabrics coated with reduced graphene oxide[J]. Applied Surface Science, 2019, 474: 203-210.
doi: 10.1016/j.apsusc.2018.03.120 |
[16] | 虞茹芳, 洪兴华, 祝成炎, 等. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10):126-131. |
YU Rufang, HONG Xinghua, ZHU Chengyan, et al. Electrical heating properties of fabric coated by reduced graphene oxide[J]. Journal of Textile Research, 2021, 42(10):126-131. |
[1] | 居傲, 向卫宏, 崔艳超, 孙颖, 陈利. 基于定制纤维铺放工艺的电加热织物制备及其半球成型性能[J]. 纺织学报, 2024, 45(02): 67-76. |
[2] | 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82. |
[3] | 贾丽萍, 黎明, 李威龙, 冉建华, 毕曙光, 李时伟. 基于长银纳米线的应变传感与电热双功能包芯纱的制备及其性能[J]. 纺织学报, 2023, 44(10): 113-119. |
[4] | 黄锦波, 邵灵达, 祝成炎. 炭化三维间隔棉织物的制备及其电加热性能[J]. 纺织学报, 2023, 44(04): 139-145. |
[5] | 胡伊丽, 周赳. 三纬组合全显结构起始点位置设置对织物显色的影响[J]. 纺织学报, 2023, 44(04): 78-85. |
[6] | 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163. |
[7] | 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(08): 107-112. |
[8] | 张星月, 韩朋帅, 王一萌, 张耘箫, 周岚, 刘国金. 非对称润湿特性纺织基材上高稳固光子晶体的构筑[J]. 纺织学报, 2022, 43(08): 88-94. |
[9] | 薛宝霞, 史依然, 张凤, 秦瑞红, 牛梅. 无卤氧化铁改性涤纶阻燃织物的制备及其性能[J]. 纺织学报, 2022, 43(05): 130-135. |
[10] | 姚明远, 刘宁娟, 王嘉宁, 许福军, 刘玮. 功能化碳纳米管复合薄膜及其膜卷纱的电热性能[J]. 纺织学报, 2022, 43(05): 86-91. |
[11] | 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123. |
[12] | 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70. |
[13] | 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33. |
[14] | 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131. |
[15] | 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127. |
|