纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 129-136.doi: 10.13475/j.fzxb.20230303001

• 染整工程 • 上一篇    下一篇

超细纤维合成革含浸用水性聚氨酯的合成及其应用

李琛1,2, 王冬1,2, 仲鸿天3, 董朋3, 付少海1,2()   

  1. 1.江苏省纺织品数字喷墨印花工程技术研究中心, 江苏 无锡 214122
    2.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
    3.江苏聚杰微纤科技集团股份有限公司, 江苏 苏州 215200
  • 收稿日期:2023-03-13 修回日期:2023-12-01 出版日期:2024-03-15 发布日期:2024-04-15
  • 通讯作者: 付少海
  • 作者简介:李琛(1999—),男,硕士生。主要研究方向为超细纤维合成革含浸用水性聚氨酯的合成及应用。
  • 基金资助:
    香江学者计划项目(XJ2021020)

Synthesis and application of microfiber leather impregnated with waterborne polyurethane

LI Chen1,2, WANG Dong1,2, ZHONG Hongtian3, DONG Peng3, FU Shaohai1,2()   

  1. 1. Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    3. Jiangsu Jujie Microfiber Technology Group Co., Ltd., Suzhou, Jiangsu 215200, China
  • Received:2023-03-13 Revised:2023-12-01 Published:2024-03-15 Online:2024-04-15
  • Contact: FU Shaohai

摘要:

为解决水性聚氨酯应用于超细纤维合成革(超纤革)含浸时存在的表面易出现裂纹及手感不佳的问题,通过在合成过程中引入聚碳酸酯二醇作为软链段,并添加三羟甲基丙烷,成功制备了成膜后具有高韧性和高强度的大分子质量小乳粒粒径水性聚氨酯乳液。结果表明:乳液的相对分子质量达到5.93×104其平均粒径仅为89.54 nm,储存稳定性良好;形成的薄膜具有优异的性能,断裂强度为3.725 MPa,断裂伸长率达到763.99%,高温下的储能模量和损耗模量分别为2 837.57 MPa和278.87 MPa。在超纤革制备中,应用这种水性聚氨酯可改善黏结固化情况,显著减少表面裂纹,提升弹性和柔软度。

关键词: 水性聚氨酯, 超细纤维合成革, 含浸工艺, 乳粒粒径, 三羟甲基丙烷, 聚碳酸酯二醇

Abstract:

Objective As an artificial leather product, impregnated microfiber leather owns excellent thermodynamic properties, rebound resilience, softness, and fullness. However, the main material for its production is solvent polyurethane, which causes serious environmental pollution. Whereas waterborne polyurethane, an environmental-friendly material, brings problems of surface cracks and poor texture when applied to the impregnation of microfiber leather. In order to solve these problems, a particular waterborne polyurethane emulsion was designed and synthesized by referring to the solvent polyurethane with large molecular weight and small particle size, and then successfully applied to the production of impregnated microfiber leather.

Method The prepolymer method was adopted to synthesize the target waterborne polyurethane emulsion by using isophorone diisocyanate (IPDI) as the hard segment, polycarbonate diol (PCDL) as the soft segment, 2,2-bis(hydroxymethyl) propionic acid as the hydrophilic chain extender, and 1,4-butanediol as the flexible chain extender, trimethylolpropane (TMP) as internal cross-linking agent, and ethylenediamine as post chain extender. The relative molecular weight and emulsion particle size of waterborne polyurethane were controlled by adjusting the relative molecular weight of PCDL and the content of TMP, the waterborne polyurethane emulsion with the optimal formula was applied to the production of impregnated microfiber leather.

Results Firstly, emulsion tests were conducted to explore the influences of PCDL relative molecular weight and TMP content on the waterborne polyurethane emulsion in different aspects. According to the results, the relative molecular weight and emulsion particle size of the waterborne polyurethane emulsion was increased with the rising of the PCDL relative molecular weight, and the emulsion particle size decreases first and then increases sharply with the growth of TMP content. When the PCDL relative molecular weight reached 500, the emulsion would be cured smoothly to form a film, and when the PCDL relative molecular weight exceeds 3 000, the emulsion doesn't emulsify but disperses in a flocculating form due to the overlong molecular chain segment. When the TMP content surpasses 3%, the waterborne polyurethane emulsion obviously begins to precipitate due to excessive long-chain network structures and seriously intertwined segments. When the PCDL relative molecular weight amounts to 2 000 with a 3% TMP mass fraction, the synthesized waterborne polyurethane demonstrates a strong storage stability with a relative molecular weight of 5.93×104 and a particle size of merely 89.54 nm. After DSC, DMA, and mechanics property analysis tests on the cured films of the above waterborne polyurethane, it was concluded from PCDL molecular weight that the storage modulus and loss modulus of the films at high temperature can reach 2 837.57 MPa and 278.87 MPa, while the breaking strength was 3.725 MPa with an elongation at break of 763.99%. The target product was obtained by adopting the above waterborne polyurethane to produce the impregnated microfiber leather. Its cross-sectional SEM images showed that the internal bonding and curing of waterborne polyurethane were significantly improved with even and stable distribution. It was observed from the tensile diagrams of the microfiber leather that the surface cracks were also resolved.

Conclusion A waterborne polyurethane emulsion which had large molecular weight and small particle size was produced, with both its emulsion state and physical and chemical properties showing stability. While applied to the production of impregnated microfiber leather, it was observed that the obtained waterborne polyurethane demonstrated high performance as well as the possibility of large-scale production. The curing condition inside the microfiber leather has been improved by enhancing the wettability and bonding property of the substrate in the real application, thus effectively reducing surface cracks, and retaining a good texture and elasticity.

Key words: waterborne polyurethane, microfiber leather, impregnating process, emulsion particle size, trimethylolpropane, polycarbonate diol

中图分类号: 

  • TS193.5

表1

水性聚氨酯的制备处方"

样品编号 质量/g
PCDL IPDI DMPA BDO TMP EDA TEA H2O
WPU500-1 30 28.75 2.5 1.25 0 1.31 1.51 130.64
WPU1000-1 30 17.47 2.02 1.01 0 1.09 1.21 105.90
WPU2000-1 30 11.83 1.78 0.89 0 0.93 1.07 93.00
WPU3000-1 30 9.01 1.66 0.83 0 0.85 1.00 86.70
WPU2000-2 30 14.18 1.90 0.95 0.48(w=1%) 0.99 1.15 99.30
WPU2000-3 30 18.69 2.14 1.07 1.61(w=3%) 1.12 1.29 111.84
WPU2000-4 30 25.63 2.50 1.25 3.13(w=5%) 1.30 1.51 130.60
WPU2000-5 30 34.82 2.98 1.49 5.22(w=7%) 1.59 1.80 155.80

表2

PCDL相对分子质量对WPU乳液稳定性及成膜状态的影响"

样品编号 乳液状态 离心稳定性 储存稳定性 成膜状态
WPU500-1 微透明带蓝光 稳定 >3个月 胶膜碎裂
WPU1000-1 微透明带蓝光 稳定 >3个月 透明稳定
WPU2000-1 微透明带蓝光 稳定 >3个月 透明稳定
WPU3000-1 凝絮状无法分散

表3

TMP质量分数对WPU乳液稳定性及成膜状态的影响"

样品编号 乳液状态 离心稳定性 储存稳定性 成膜状态
WPU2000-1 微透明带蓝光 稳定 >3个月 透明稳定
WPU2000-2 微透明带淡蓝光 稳定 >3个月 透明稳定
WPU2000-3 微透明白色乳液 稳定 >3个月 透明稳定
WPU2000-4 白色乳液 微有沉淀 <1个月 表面粗糙
WPU2000-5 白色乳液 有沉淀 <1个月 有颗粒凸起

图1

不同TMP质量分数的WPU乳液的状态"

图2

PCDL相对分子质量及TMP质量分数对WPU乳液粒径分布的影响"

表4

WPU乳液的理化性质"

样品编号 固含量/% pH值 黏度/(mPa·s) 重均分子量 平均粒径/nm PDI值
WPU1000-1 32.1±1.1 7.84±0.09 55.34±1.75 3.42×104 89.54 0.179
WPU2000-1 31.8±0.6 7.71±0.04 40.58±0.57 5.27×104 122.00 0.175
WPU2000-3 32.3±0.8 7.73±0.05 49.87±1.62 5.93×104 94.55 0.217

图3

WPU薄膜的红外光谱图"

图4

PCDL相对分子质量及TMP质量分数对WPU薄膜玻璃化转变温度及结晶性的影响"

图5

PCDL相对分子质量及TMP质量分数对WPU薄膜黏弹性的影响"

图6

PCDL相对分子质量及TMP质量分数对WPU薄膜力学性能的影响"

图7

WPU含浸超纤革截面SEM照片"

表5

不同WPU含浸超纤革的性能测试结果"

超纤革 急弹回复角/(°) 缓弹回复角/(°) 比压缩回弹率/% 柔软度/mm 开裂情况
空白样基布 85.3±0.36 93.5±1.59 1.72±0.02 8.97±0.05
DIC WLI-630AR含浸超纤革 94.2±0.62 120.4±1.84 4.22±0.03 7.63±0.08 裂纹多
WPU2000-3含浸超纤革 105.6±0.50 130.9±2.08 4.98±0.03 7.62±0.05 裂纹少
[1] 郭学方, 张家发, 颜俊, 等. 超纤革含浸用水性聚氨酯的制备及性能研究[J]. 中国皮革, 2017, 46(9): 33-41.
GUO Xuefang, ZHANG Jiafa, YAN Jun, et al. Preparation and properties of waterborne polyurethane for microfiber synthetic leather impregnating[J]. China Leather, 2017, 46(9):33-41.
[2] DUO Y C, QIAN X M, ZHAO B B, et al. Improving hygiene performance of microfiber synthetic leather base by mixing poly-hydroxybutyrate nanofiber[J]. Journal of Engineered Fibers and Fabrics, 2019.DOI: 10.1177/15589250198425.
[3] 宋倩倩. 水性聚氨酯超纤革的研究与开发[D]. 北京: 北京服装学院, 2021:1-35.
SONG Qianqian. Research and development of waterborne polyurethane microfiber leather[D]. Beijing: Beijing Institute of Fashion Technology, 2021:1-35.
[4] 郭梦亚. 水性聚氨酯/超细纤维复合材料的制备与性能研究[D]. 西安: 陕西科技大学, 2016:1-43.
GUO Mengya. Preparation and properties of waterborne polyurethane/microfiber composites[D]. Xi'an: Shaanxi University of Science and Technology, 2016:1-43.
[5] 张杰, 李颖华. 我国聚氨酯行业弹性体市场发展现状[J]. 聚氨酯工业, 2019, 34(6): 1-5.
ZHANG Jie, LI Yinghua. Development status of my country's polyurethane industry elastomer market[J]. Polyurethane Industry, 2019, 34(6): 1-5.
[6] HONARKAR H. Waterborne polyurethanes: a review[J]. Journal of Dispersion Science and Technology, 2018, 39(4): 507-516.
doi: 10.1080/01932691.2017.1327818
[7] TENNEBROEK R, VAN Der Hoeven-Van Casteren I, SWAANS R, et al. Water-based polyurethane dispersions[J]. Polymer International, 2019, 68(5): 832-842.
doi: 10.1002/pi.5627
[8] 张伟芳. 水性聚氨酯消光树脂的制备与应用[D]. 上海: 东华大学, 2017:1-51.
ZHANG Weifang. Preparation and application of waterborne polyurethane matting resin[D]. Shanghai: Donghua University, 2017:1-51.
[9] COSTA V, NOHALES A, FELIX P, et al. Structure-property relationships of polycarbonate diol-based polyurethanes as a function of soft segment content and molar mass[J]. Journal of Applied Polymer Science, 2015.DOI: 10.1002/app.41704.
[10] FUENSANTA M, JOFRE-RECHE J A, RODRIGUEZ-Llansola F, et al. Structural characterization of polyurethane ureas and waterborne polyurethane urea dispersions made with mixtures of polyester polyol and polycarbonate diol[J]. Progress in Organic Coatings, 2017, 112: 141-152.
doi: 10.1016/j.porgcoat.2017.07.009
[11] KALAJAHI A E, REZAEI M, ABBASI F, et al. The effect of chain extender type on the physical, mechanical, and shape memory properties of poly(epsilon-caprolactone)-based polyurethane-ureas[J]. Polymer-Plastics Technology and Engineering, 2017, 56(18): 1977-1985.
doi: 10.1080/03602559.2017.1298797
[12] SUN L J, JIANG H M. Design, preparation and properties of polyurethane dispersions via prepolymer method[J]. Molecules, 2023, 28(2):1-11.
doi: 10.3390/molecules28010001
[1] 辛华, 李阳帆, 罗浩. 复合改性氧化石墨烯接枝水性聚氨酯的制备及其性能[J]. 纺织学报, 2023, 44(08): 133-142.
[2] 孙国强, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 内交联型自消光水性聚氨酯树脂的制备及其性能[J]. 纺织学报, 2023, 44(07): 151-158.
[3] 庞明科, 王淑花, 史晟, 薛立钟, 郭红, 高承永, 卢建军, 赵晓婉, 王子涵. 废旧聚对苯二甲酸乙二醇酯纤维醇解制备阻燃水性聚氨酯及其应用[J]. 纺织学报, 2023, 44(02): 214-221.
[4] 马逸平, 樊武厚, 吴晋川, 蒲宗耀. 全水基杂化型无氟防水剂制备及其在涤/棉织物防水整理中应用[J]. 纺织学报, 2022, 43(02): 183-188.
[5] 刘淑强, 靖逸凡, 杨雅茹, 吴改红, 余娟娟, 王凯文, 李惠敏, 李甫, 张曼. 自修复双层微胶囊的制备及其在玄武岩织物上的应用[J]. 纺织学报, 2021, 42(04): 127-131.
[6] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135.
[7] 王亚停, 赵家琪, 王碧佳, 冯雪凌, 钱国春, 隋晓锋. 超细纤维合成革的染色与功能整理研究进展[J]. 纺织学报, 2020, 41(07): 188-196.
[8] 徐艳, 籍晓倩, 陈坤林, 王潮霞. 自着色水性聚氨酯制备及其在棉织物涂层中的应用[J]. 纺织学报, 2019, 40(07): 85-89.
[9] 徐成书 同晓妮 蔡再生 陈前维 邢建伟 任燕. 线性聚醚嵌段氨基硅油改性水性聚氨酯抗起毛起球剂的合成及其应用[J]. 纺织学报, 2018, 39(09): 84-89.
[10] 刘素素 姜蕾 隋晓锋 毛志平 徐红 张琳萍 钟毅. 水性聚氨酯-丙烯酸酯包覆颜料色浆在涂料染色中的应用[J]. 纺织学报, 2018, 39(09): 71-76.
[11] 赵宝宝 钱晓明 钱幺 范金土 封严 朵永超. 水性聚氨酯机械发泡涂层的响应面法优化制备[J]. 纺织学报, 2018, 39(07): 95-099.
[12] 强涛涛 王杨阳 王乐智 郑永贵 张丰杰 郑书杰. 交联剂改性超细纤维合成革基布的性能[J]. 纺织学报, 2017, 38(09): 101-108.
[13] 冯静静 柴春鹏 葛震 罗运军. 耐静水压阻燃水性聚氨酯织物涂层剂的制备及其性能[J]. 纺织学报, 2016, 37(05): 92-96.
[14] 狄剑锋 刘裕文 纪凤龙. 交联型有机硅改性聚氨酯丙烯酸酯乳液的合成及其性能[J]. 纺织学报, 2016, 37(01): 75-80.
[15] 王志佳, 陈英. 不同添加剂对防水透湿涂层整理的影响[J]. 纺织学报, 2012, 33(6): 66-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!