纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 169-176.doi: 10.13475/j.fzxb.20221204501

• 服装工程 • 上一篇    下一篇

基于服装吊挂系统协同的车间混合流水线布局优化

童锡宇1, 郑路2, 杨金昌2, 胡觉亮3, 韩曙光3()   

  1. 1.浙江理工大学 经济管理学院, 浙江 杭州 310018
    2.达利(中国)有限公司, 浙江 杭州 311200
    3.浙江理工大学 理学院, 浙江 杭州 310018
  • 收稿日期:2023-01-19 修回日期:2023-10-10 出版日期:2024-03-15 发布日期:2024-04-15
  • 通讯作者: 韩曙光
  • 作者简介:童锡宇(1997—),男,硕士。主要研究方向为物流系统建模与优化。
  • 基金资助:
    国家自然科学基金项目(12071436)

Optimization of mixed production line layout for collaborative clothing suspension system

TONG Xiyu1, ZHENG Lu2, YANG Jinchang2, HU Jueliang3, HAN Shuguang3()   

  1. 1. School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. High Fashion (China) Co., Ltd., Hangzhou, Zhejiang 311200, China
    3. School of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2023-01-19 Revised:2023-10-10 Published:2024-03-15 Online:2024-04-15
  • Contact: HAN Shuguang

摘要:

为适应服装生产企业转型,针对服装制造车间混合流水线生产存在吊挂系统的物料传输路径耗时耗能、各工作台作业负荷时间不均、加工周期长及加工设备资源浪费等问题,根据服装生产工艺流程、工作台资源和加工设备数量受限、理性生产节拍等约束条件,建立物料传输总距离极小化及平滑系数极小化的双目标数学规划模型;设计非支配遗传(NSGA-Ⅱ)算法,对多款式服装生产具体实例进行编程仿真求解,并与多目标粒子群(MOPSO)算法进行优化对比。研究结果表明:NSGA-Ⅱ算法拥有更好的寻优能力,实验得到最优总距离为82 m、最优平滑系数为21.977、最优编制效率为90.2%、最少只需要打开10个工作台和使用18台加工设备,企业可根据不同目标的需要择优选出相应的布局编排方案。

关键词: 双目标布局优化, 服装吊挂, 服装车间, 混合流水线, NSGA-Ⅱ算法, 节能增效

Abstract:

Objective In order to adapt to the transformation and upgrading of clothing manufacturing enterprises, and quickly respond to market demand, most clothing manufacturing enterprises had introduced many intelligent production equipment such as clothing suspension systems to replace conventional backward bundled assembly line production. In order to apply new production equipment in the actual production, some problems were identified for the mixed assembly line in the clothing manufacturing workshop such as unreasonable suspension system material transmission path, time consumption and energy consumption, uneven workload time of each workbench, long processing cycle, and waste of processing equipment resources. The optimization of workshop assembly line layout considering the collaboration of clothing suspension systems was carried out aiming to effectively solve the above-mentioned problems of clothing production lines.

Method Because of the involvement of multiple disciplines such as clothing, logistics, and operations research, as well as the complexity of the production process, it was necessary to conduct on-site investigations, observe the production line process of clothing production, analyze the production process diagram of clothing production enterprises and the raw data in MES systems. Based on the constraints of the clothing production process, limited workbench resources and processing equipment quantity, and rational production rhythm, a dual objective mathematical programming model was established to minimize material transmission distance and smoothness coefficient. The non-dominant sorting genetic(NSGA-II) algorithm was designed and applied to solve the production lines of multi-style clothing.

Results From the optimization objective iteration curve generated using NSGA-II algorithm, it was found that the algorithm had a good optimization effect on the green mixed clothing assembly line, and the total distance and smoothness coefficient of material transmission had converged to a stable level in over 300 generations. Based on the production data examples, the Pareto optimal solution set was obtained. Because of the two objectives of the total distance of material transmission and the smoothing coefficient, a non-dominated solution with the best total distance and the non-dominated solution with the best smoothing coefficient were extracted from the solution set for analysis. When 12 workstations are operational and 21 processing devices are utilized, the average idle time per workstation amount to 42.2 s, resulting in an optimal total distance of material transport measuring 82 m. However, the smoothness coefficient stands at 55.86 and the compilation efficiency is merely 75.2%. Conversely, when operating with only 10 workstations and utilizing 18 processing devices, each workstation experiences an average idle time of approximately 16.6 s while achieving a smoother coefficient of 24.104. This leads to an improved compilation efficiency of up to 90.2%, albeit at the expense of increased material transport distance reaching a value of approximately 100 m. The total distance of material transmission in the minimum production cycle was 82 m, with a smoothness coefficient of 55.86, and 12 workstations were needed with 21 processing equipment. The average idle time of each workbench was 42.2 s, and the staffing efficiency was 75.2%. The total transmission distance of the material was 100 m, and the smoothness coefficient was 21.977. It was necessary to operate 10 workstations with 18 processing equipment. The idle time of each workbench was 16.6 s, and the staffing efficiency was 90.2%. The Gantt chart of the work tasks for each workstation in the mixed clothing assembly line were generated according to the scheme. In order to verify the effectiveness of the model, NSGA-II algorithm and multi-objective particle swarm optimization(MOPSO) algorithm were compared, and the result showed that NSGA-II algorithm produced closer simulation results.

Conclusion Faced with the transformation of the clothing industry structure, the design of the entire production line plays a crucial role in intelligent clothing manufacturing. The optimization of workshop assembly line layout considering the synergistic effect of clothing suspension system helps promote the transformation and it is useful for upgrading of China's clothing and textile industry from labor-intensive to less labor intensive or unmanned production. This study provides some theoretical reference for the promotion of green and intelligent manufacturing in the clothing enterprises.

Key words: two-objective layout optimization, clothing hanging, clothing workshop, mixing assembly line, NSGA -Ⅱ algorithm, energy saving and efficiency improvement

中图分类号: 

  • TS941

表1

符号说明"

参数 符号含义
N 工序总数, i = 1,2 , , N
K 工作台总数, k = 1,2 , , K
E 加工设备种类总数, e = 1,2 , , E
R 服装种类总数, r = 1,2 , , R
C 平均生产节拍
Y 目标日产量
Q 目标日加工时间
α 有效加工系数, α ( 0,1 )
β 在制品传递时间系数, β ( 0,1 )
Z 生产传输总距离
M 能使用的最大加工设备总数
S I 平滑系数
t i r 款式r服装在工序i的加工时间
d k l 工作台k和工作台l之间的距离
T k 工作台k上的加工时间
y i j r 款式r服装的工艺工序从工序i到工序j则为1,否则为0
x i r k 款式r服装的第i道工艺工序在工作台k上加工时则为1,否则为0
z k 使用第k个工作台则为1,否则为0
B e k 在工作台k上使用e种加工设施则为1,否则为0

图1

小规模算例优化结果图"

图2

NSGA-Ⅱ算法流程图"

图3

A、B衬衫工艺工序流程图"

图4

多目标优化迭代过程"

表2

总距离最优的非支配解"

工作台 工艺工序编号 资源设备 空闲时间/s 总距离/m 平滑系数
1 1、2、6、19、29、30 熨烫机、缝纫机 6 82 55.86
2 19、22、25、27、31、32、34 熨烫机、缝纫机 13
3 3、6、7、28 拷边机、缝纫机 90
4 2、20、21、22、29、34 熨烫机、缝纫机 10
5 3、4、8 拷边机、缝纫机 81
6 9、23、24、25、26、35 缝纫机、钉扣机 52
7 5、7 熨烫机、拷边机 123
8 10、11、12 缝纫机 4
9 8、9、10、11、14、15 拷边机、缝纫机 19
10 13、14、15、16 缝纫机 28
11 16、17、18 缝纫机、钉扣机 28
12 17、18 钉扣机 52

表3

平滑系数最优的非支配解"

工作台 工艺工序编号 资源设备 空闲时间/s 总距离/m 平滑系数
1 1、2、3、19、22 熨烫机、拷边机 28 110 21.977
2 4、5、25、27、29、33、34 熨烫机、缝纫机 1
3 2、6、19、20、21、22、29 熨烫机、缝纫机 31
4 3、6、7、8、28 拷边机、缝纫机 11
5 23、24、25、30、31、32 钉扣机、缝纫机 1
6 7、8、9、10、11、34、35、36 拷边机、缝纫机 2
7 9、10、11、26 缝纫机、钉扣机 39
8 12、13、14、15 缝纫机 13
9 14、15、16 缝纫机 28
10 16、17、18 缝纫机、钉扣机 12

图5

工作台的工作负荷情况"

表4

NSGA-Ⅱ算法与MOPSO算法的优化结果"

算法
类型
最优总
距离/m
最优平滑
系数
最优编制
效率/%
平均运行
时间/s
NSGA-Ⅱ 82 21.977 90.2 209.333
MOPSO 202 38.523 82.0 151.295
[1] 郑路, 颜伟雄, 胡觉亮, 等. 基于模块化的服装混合流水线平衡优化[J]. 纺织学报, 2022, 43(4): 140-146.
ZHENG Lu, YAN Weixiong, HU Jueliang, et al. Balance optimization of garment mixed assembly line based on modularization[J]. Journal of Textile Research, 2022, 43(4): 140-146.
[2] KUCUKKOC I, ZHANG D. Mixed-model parallel two-sided assembly line balancing problem[J]. Computers and Industrial Engineering, 2016, 97(4): 58-72.
doi: 10.1016/j.cie.2016.04.001
[3] SADEGHI P, RUI D R, FERREIRA J S. Balancing mixed-model assembly systems in the footwear industry with a variable neighbourhood descent method[J]. Computers & Industrial Engineering, 2018, 121(7): 161-176.
doi: 10.1016/j.cie.2018.05.020
[4] ZHANG J H, LI A P, LIU X M. Hybrid genetic algorithm for a type-II robust mixed-model assembly line balancing problem with interval task times[J]. Advances in Manufacturing, 2019, 7(10): 117-132.
doi: 10.1007/s40436-019-00256-3
[5] 钱存华, 黄宇博. 基于遗传算法的服装生产混合流水线平衡设计[J]. 毛纺科技, 2021, 49(5): 75-79.
QIAN Cunhua, HUANG Yubo. Balance design of garment production hybrid assembly line based on genetic algorithm[J]. Wool Textile Journal, 2021, 49(5): 75-79.
[6] 王凌, 王晶晶, 吴楚格. 绿色车间调度优化研究进展[J]. 控制与决策, 2018, 33(3):385-391.
WANG Ling, WANG Jingjing, WU Chuge. Research progress of green shop scheduling optimization[J]. Control and Decision, 2018, 33(3): 385-391.
[7] FANG K, UHAN N, ZHAO F, et al. Flow shop scheduling with peak power consumption constraints[J]. Annals of Operations Research, 2013, 206(1): 115-145.
doi: 10.1007/s10479-012-1294-z
[8] 蒋增强, 左乐. 低碳策略下的多目标柔性作业车间调度[J]. 计算机集成制造系统, 2015, 21(4): 1023-1031.
JIANG Zengqiang, ZUO Le. Multi-objective flexible job shop scheduling under low-carbon strategy[J]. Computer Integrated Manufacturing Systems, 2015, 21(4): 1023-1031.
[9] TANG D, MIN D, SALIDO M A, et al. Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization[J]. Computers in Industry, 2016, 81(C): 82-95.
[10] YAPING Fu, TIAN G, FATHOLLAHI-FARD A M, et al. Stochastic multi-objective modelling and optimization of an energy-conscious distributed permutation flow shop scheduling problem with the total tardiness constraint[J]. Journal of Cleaner Production, 2019, 226: 515-525.
doi: 10.1016/j.jclepro.2019.04.046
[11] CHEN H W, LIU G P, TU H N T, et al. Layout adjustment of cellular production line based on material logistic analysis[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(5): 1409-1420.
doi: 10.1007/s00170-013-4784-5
[12] ZAKIRAH T, EMERALDI R, HANDI O M, et al. Warehouse layout and workflow designing at PT. PMS using systematic layout planning method[C]// IOP Conference Series: Earth and Environmental Science. [S.l.]: IOP Publishing, 2018: 1-8.
[13] 李杰, 夏远猛, 宋智勇, 等. 飞机结构件柔性生产系统设备布局分析与优化[J]. 航空制造技术, 2020, 63(6): 51-56.
LI Jie, XIA Yuanmeng, SONG Zhiyong, et al. Equipment layout analysis and optimization of flexible production system for aircraft structural parts[J]. Aeronautical Manufacturing Technology, 20, 63(6): 51-56.
[14] 张苏宁, 王泽, 马大力. 基于改进蚁群算法的Flexsim衬衣流水线仿真优化[J]. 纺织学报, 2021, 42(3): 155-160.
ZHANG Suning, WANG Ze, MA Dali. Simulation and optimization of flexsim shirt assembly line based on improved ant colony algorithm[J]. Journal of Textile Research, 2021, 42(3): 155-160.
doi: 10.1177/004051757204200304
[15] 周鲜成, 蒋涛营, 贺彩虹, 等. 冷链物流配送的绿色车辆路径模型及其求解算法[J]. 中国管理科学, 2022, 461(9): 1-11.
ZHOU Xiancheng, JIANG Taoying, HE Caihong, et al. Green vehicle routing model and its solution algorithm for cold-chain logistics distribution[J]. Chinese Journal of Management Science, 2022, 461(9): 1-11.
[16] ZHANG J H, LI A P, LIU X M. Hybrid genetic algorithm for a type-II robust mixed-model assembly line balancing problem with interval task times[J]. Advances in Manufacturing, 2019, 7(10): 1-16.
doi: 10.1007/s40436-018-00244-z
[1] 杨光, 杨小兵, 栗丽, 姚之凤, 周川, 张明明. 新修定的化学防护服国家标准解析[J]. 纺织学报, 2024, 45(03): 163-168.
[2] 王馨雨, 田明伟. 具有距离监测与辅助提示功能的自闭症儿童智能服装设计[J]. 纺织学报, 2024, 45(03): 156-162.
[3] 刘欢欢, 孟虎, 王朝晖. 适老化智能可穿戴设计研究进展及发展趋势[J]. 纺织学报, 2024, 45(03): 236-243.
[4] 杨洋, 刘成霞. 可视化织物弯曲性测试方法[J]. 纺织学报, 2024, 45(03): 74-80.
[5] 张婧, 辛斌杰, 袁智杰, 许颖琦. 基于边缘引导的纺织品纹样数字化修复方法[J]. 纺织学报, 2024, 45(02): 101-111.
[6] 韩烨, 田苗, 蒋青昀, 苏云, 李俊. 织物-空气层-皮肤三维结构建模及其传热模拟[J]. 纺织学报, 2024, 45(02): 198-205.
[7] 何崟, 邓凌, 林美霞, 李倩倩, 肖爽, 刘皓, 刘莉. 冬季运动智能柔性人台关键技术开发[J]. 纺织学报, 2024, 45(02): 221-230.
[8] 杜培研, 陈敬玉, 张晓夏. 身材认知在服装分割设计中的感性工学应用[J]. 纺织学报, 2024, 45(02): 231-237.
[9] 张静, 丛洪莲, 蒋高明. 纬编双面移圈织物多层弹簧-质点结构模型构建与实现[J]. 纺织学报, 2024, 45(01): 106-111.
[10] 盛欣洋, 陈晓娜, 卢娅娅, 李艳梅, 孙光武. 面料拉伸性能与运动文胸防震功能的定量关系[J]. 纺织学报, 2024, 45(01): 161-167.
[11] 吴冬雪, 刘让同, 于媛媛, 李淑静, 韩赟. 下肢运动状态特征对裤装臀围的影响分析[J]. 纺织学报, 2024, 45(01): 168-175.
[12] 王兆芳, 张辉, 丁波, 张淼. 文胸罩杯透湿率测定新方法[J]. 纺织学报, 2024, 45(01): 176-184.
[13] 韩燕娜, 江翼成, 郑霞, 杨子田. 情绪在小生褶子设计要素和语义评价间的中介作用[J]. 纺织学报, 2024, 45(01): 185-193.
[14] 周莉, 樊培宏, 金玉婷, 张龙琳, 李新荣. 服装逆向造型的数字化设计方法[J]. 纺织学报, 2023, 44(12): 138-144.
[15] 王兆芳, 丁波, 张辉, 陈思璘. 青年女性胸部出汗分布和出汗率的测定[J]. 纺织学报, 2023, 44(12): 145-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!