纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 49-57.doi: 10.13475/j.fzxb.20221003301

• 纺织工程 • 上一篇    下一篇

基于多视角图像的纱线条干均匀度测量方法

扶才志1, 曹鸿艳1, 廖文皓1, 李忠健1(), 黄琪翔2, 蒲三成3   

  1. 1.绍兴文理学院 人工智能研究院, 浙江 绍兴 312000
    2.诸暨市捷速尔纺织机械有限公司, 浙江 绍兴 311800
    3.苏州市图米智能信息科技有限公司, 江苏 苏州 215000
  • 收稿日期:2022-10-14 修回日期:2023-10-07 出版日期:2024-03-15 发布日期:2024-04-15
  • 通讯作者: 李忠健
  • 作者简介:扶才志(1999—),女,硕士生。主要研究方向为纺织品图像处理技术。
  • 基金资助:
    浙江省基础公益研究计划项目(LGG21F030007);中国博士后科学基金面上资助项目(2020M681736);绍兴文理学院科研启动项目(20195026);绍兴文理学院校级科技重点项目(2019LG1006);中国纺织工业联合会科技指导性项目(2022009)

Yarn unevenness measurement method based on multi-view images

FU Caizhi1, CAO Hongyan1, LIAO Wenhao1, LI Zhongjian1(), HUANG Qixiang2, PU Sancheng3   

  1. 1. Institute of Artificial Intelligence, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Zhuji JSE Textile Machinery Company Limited, Shaoxing, Zhejiang 311800, China
    3. Suzhou Tumi Intelligent Information Technology Co., Ltd., Jiangsu 215000, China
  • Received:2022-10-14 Revised:2023-10-07 Published:2024-03-15 Online:2024-04-15
  • Contact: LI Zhongjian

摘要:

为能更精确地表征纱线条干三维特征,实现纱线条干均匀度的质量评估,采用多视角图像对纱线条干均匀度的测量进行研究。首先选择5种不同线密度的环锭纺纯棉纱,通过搭建多视角纱线图像获取装置,实现纱线多个角度的图像采集;其次对获取的4个方向的纱线图像进行自动阈值分割、图像自动裁剪、毛羽快速清除以及孤立区域去除等处理,得到清晰、无噪点的纱线主干图像;最后求得纱线主干的单视角与多视角直径、CV值,并提出新的表征纱线条干不匀的多视角不匀均值(CVn)指标和三维条干变异系数(S)指标。其数据结果与乌斯特条干仪的测试结果对比表明:2种测试方法检测的纱线直径相差不大,都随着线密度的减小而减小;单视角和多视角下,0.3 mm片段长度下纱线直径CV值、8 mm片段长度下纱线直径CV值与乌斯特条干仪测得的结果趋势变化一致;提出的三维条干变异系数S虽大于乌斯特条干仪测得的CV值,但总体趋势保持一致。

关键词: 纱线质量, 条干均匀度, 多视角图像, 图像分割, 椭圆模型, 三维检测

Abstract:

Objective The performance of yarn directly determines the quality of the fabric, and the unevenness of yarn is an important indicator for evaluating yarn quality. Testing and analyzing yarn unevenness is a necessary aspect for controlling and improving yarn quality. However, as a typical linear heterogeneous material, yarn is difficult to accurately characterize its actual performance by simply detecting its volume or single direction projection using existing detection instruments. In order to more accurately represent the three-dimensional features of yarn, a method based on multi-view yarn images is proposed to measure and evaluate the yarn unevenness.

Method An image acquisition device with single camera was constructed to obtain images of yarn from multiple view angles, before the obtained yarn images in four directions were processed sequentially through automatic threshold segmentation, image automatic cropping, rapid removal of hairiness, and removal of isolated areas. A clear and noise-free image of the yarn core was obtained. Single- and multi-view diameters and CV values were read from the yarn core image, and new multi-view unevenness mean (CVn) indicators and three-dimensional unevenness variation coefficient (S) indicators were proposed based on the elliptical model to characterize yarn unevenness.

Results The unevenness of five cotton ring spun yarns with different linear densities was tested and compared with the test results of Uster tester. The results showed that the difference in yarn diameter detected by the two testing methods is not significant, both illustrating diameter decreases as the linear density was decreased. The average diameters measured from four single perspectives was quite consistent, indirectly indicating that the diameter testing process of the proposed method is correct. The yarn diameter measured by the proposed method was slightly smaller than that measured by the Uster tester, mainly because of the use of image processing operations to remove hairiness. The results also showed that CV 0.3 mm, CV 8 mm under single and multiple view angles was consistent with the results measured by Uster tester. The CV values gradually increase with the decrease of linear density, which was consistent with the theory that says the smaller the linear density, the more uneven the yarn. The proposed three-dimensional unevenness variation coefficient S, regardless of S 1p, S 0.3 mm, or S 8 mm, increased with the decline of yarn linear density, and all conform to the theory that the larger the fiber length, the smaller the CV value. The proposed method approximated the yarn with a regular ellipse for cross-sectional area, and the diameter values of multiple perspectives were multiplied using the ellipse area formula. As the area increases compared to the diameter value, the CV value also increases. Therefore, the measured S values are greater than the Uster tester results at various cutting lengths, thus can characterize the variation rule of yarn thickness.

Conclusion In this paper, a new image processing method and a new indicator for characterizing yarn unevenness are proposed based on a multi-image acquisition device with single camera. The yarn detection results are compared with the diameter and CV values measured by the Uster tester and the proposed method. The results show that in terms of yarn appearance diameter, single-view and multi-view CV, the two methods lead similar results with consistency, which are in line with relevant theory and understanding, suggesting that the method proposed in this paper could be used for detecting yarn unevenness. However, this paper used a rotating camera to capture multi-view images, which caused inefficient. What's more, the yarn cross-sectional area is regarded as a regular ellipse to calculation. After the diameter values of multiple angles are multiplied according to the ellipse area formula, the data base value becomes larger, and then the CV value becomes larger. This is also the main reason why S is too large in this paper. In the future, a multi-camera real-time yarn detection device should be built up to facilitate three-dimensional real-time yarn detection.

Key words: yarn quality, yarn unevenness, multi-view image, image segmentation, elliptic model, three-dimensional detection

中图分类号: 

  • TS103.7

图1

多视角纱线图像获取装置 注: 1—旋转台控制器; 2—箱体; 3—防抖动与张力控制导纱轮; 4—背光源; 5—工业相机; 6—光源控制器; 7—镜头; 8—旋转台。"

图2

4个视角的棋盘格标定板图像"

图3

5种线密度纱线不同视角的图像"

图4

5种纱线的OTSU分割图像"

图5

5种纱线的裁切图像"

图6

毛羽快速去除原理图"

图7

不同T1下的纵向遍历处理图像"

图8

不同T2下的横向遍历处理图像"

图9

去除孤立区域的纱线图像"

图10

单幅图像纱线直径波动图"

图11

人工分割与自动分割方法结果对比"

图12

相机位置图及纱线横截面示意图"

表1

单视角下本文方法与乌斯特条干仪测试条干不匀对比结果"

试样
编号
本文方法测试结果 乌斯特条干仪测试结果
CV0.3/% CV8/% D/mm
CV0.3/% CV8/% Du/mm
90° 180° 270° 90° 180° 270° 90° 180° 270°
1# 19.91 19.94 19.72 20.28 10.46 10.28 10.27 10.57 0.379 0.379 0.380 0.379 10.96 8.44 0.389
2# 21.68 21.24 21.27 21.40 11.31 10.94 10.83 11.01 0.259 0.259 0.260 0.259 11.09 8.63 0.258
3# 22.89 22.81 22.81 22.81 12.64 12.12 12.05 12.57 0.209 0.208 0.209 0.209 14.77 11.46 0.214
4# 22.92 23.23 23.32 23.41 11.36 11.70 11.41 11.41 0.173 0.173 0.173 0.173 14.03 10.97 0.184
5# 29.12 28.54 28.57 28.83 15.31 15.31 14.75 15.01 0.166 0.165 0.168 0.166 17.35 14.07 0.140

表2

多视角下本文方法测试结果"

试样编号 CVn/% Dn/mm
0.3 mm 8 mm
1# 20.28 10.57 0.379
2# 21.40 11.01 0.259
3# 22.81 12.57 0.209
4# 23.41 11.47 0.173
5# 28.83 15.01 0.166

表3

本文方法三维条干变异系数测试结果"

试样编号 S1p S0.3 S8
1# 32.15 30.98 17.89
2# 32.98 31.53 17.13
3# 35.02 33.57 19.33
4# 38.73 36.92 19.57
5# 46.21 44.86 23.16
[1] 迟开龙, 潘如如, 刘基宏, 等. 基于数字图像处理的纱线条干均匀度检测初探[J]. 纺织学报, 2012, 33(12): 19-24.
CHI Kailong, PAN Ruru, LIU Jihong, et al. Preliminary study on yarn evenness detection based on digital image processing[J]. Journal of Textile Research, 2012, 33(12): 19-24.
[2] LI Z, PAN R, ZHANG J, et al. Measuring the unevenness of yarn apparent diameter from yarn sequence images[J]. Measurement Science and Technology, 2016, 27(1): 15404-15413.
doi: 10.1088/0957-0233/27/1/015404
[3] 周绚丽, 成玲. 纱线黑板数字图像处理方法[J]. 纺织学报, 2008, 29(8): 30-33.
ZHOU Xuanli, CHENG Ling. Digital image processing method of yarn black board[J]. Journal of Textile Research, 2008, 29(8): 30-33.
[4] 张建伟, 赵帆. 纱线条干均匀度两种测试方法的对比研究[J]. 针织工业, 2014(6): 1-3.
ZHANG Jianwei, ZHAO Fan. Comparison of two methods for yarn evenness testing[J]. Knitting Industries, 2014(6):1-3.
[5] WANG X, HOU R, GAO X, et al. Research on yarn diameter and unevenness based on an adaptive median filter denoising algorithm[J]. Fibres & Textiles in Eastern Europe, 2020, 28(1): 36-41.
[6] 陆奕辰, 王蕾, 唐千惠, 等. 应用图像处理的纱线黑板毛羽量检测与评价[J]. 纺织学报, 2018, 39(8): 144-149.
LU Yichen, WANG Lei, TANG Qianhui, et al. Detection and evaluation on yarn hairiness of blackboard with image processing[J]. Journal of Textile Research, 2018, 39(8): 144-149.
[7] 张荣根, 冯培, 刘大双, 等. 涤纶工业长丝毛丝在线检测系统的研究[J]. 纺织学报, 2022, 43(4): 153-159.
ZHANG Ronggen, FENG Pei, LIU Dashuang, et al. Research on on-line detection system of broken filaments in industrial polyester filament[J]. Journal of Textile Research, 2018, 39(8): 144-149.
[8] SENGUPTA A, ROY S, SENGUPTA S. Development of a low cost yarn parameterisation unit by image processing[J]. Measurement, 2015, 59: 96-109.
doi: 10.1016/j.measurement.2014.09.028
[9] 王延蒙, 孟凡文, 张文国. 基于改进形态学的纱线条干边缘检测方法[J]. 合成纤维工业, 2022, 45(1): 97-101.
WANG Yanmeng, MENG Fanwen, ZHANG Wenguo. Yarn edge detection algorithm based on improved morphology[J]. China Synthetic Fiber Industry, 2022, 45(1): 97-101.
[10] ELDESSOUKI M, IBRAHIM S, MILITKY J. A dynamic and robust image processing based method for measuring the yarn diameter and its variation[J]. Textile Research Journal, 2014, 84(18): 1948-1960.
doi: 10.1177/0040517514530032
[11] 李忠健, 董龙, 倪海云, 等. 基于散焦信息的纱线毛羽三维测量与验证[J]. 丝绸, 2021, 58(6): 41-47.
LI Zhongjian, DONG Long, NI Haiyun, et al. Three-dimensional measurement and verification of yarn hairiness based on defocus information[J]. Journal of Silk, 2021, 58 (6): 41-47.
[12] 张缓缓, 赵岩, 景军峰, 等. 基于亚像素边缘检测的纱条干均匀度测量[J]. 纺织学报, 2020, 41(5):391-41.
ZHANG Huanhuan, ZHAO Yan, JING Junfeng, et al. Yarn evenness measurement based on sub-pixel edge detection[J]. Journal of Textile Research, 2020, 41(5): 391-41.
doi: 10.1177/004051757104100504
[13] 李东洁, 郭帅, 杨柳. 基于改进图像阈值分割算法的纱线疵点检测[J]. 纺织学报, 2021, 42(3): 82-88.
LI Dongjie, GUO Shuai, YANG Liu. Yarn defect detection based on improved image threshold segmentation algorithm[J]. Journal of Textile Research, 2021, 42(3): 82-88.
[14] LI Z, ZHONG P, TANG X, et al. A new method to evaluate yarn appearance qualities based on machine vision and image processing[J]. IEEE Access, 2020(8): 30928-30937.
[15] ZHONG P, KANG Z, HAN S, et al. Evaluation method for yarn diameter unevenness based on image sequence processing[J]. Textile Research Journal, 2015, 85(4): 369-379.
doi: 10.1177/0040517514547211
[16] GUO Y, TAO X M, XU B G, et al. A continuous measurement system for yarn structures by an optical method[J]. Measurement Science and Technology, 2010. DOI:10.1088/0957-0233/21/11/115706.
[17] WANG L, XU B, GAO W. Multi-perspective measurement of yarn hairiness using mirrored images[J]. Textile Research Journal, 2018, 88(6): 621-629.
doi: 10.1177/0040517516685281
[18] MA Y, ZUO X, WANG L, et al. Three-dimensional measurement of yarn evenness using mirrored images[J]. Measurement, 2022. DOI:10.1016/j.measurement.2022.110834.
[19] 马运娇, 王蕾, 潘如如, 等. 基于平面镜成像的纱线条干三维合成校准方法[J]. 纺织学报, 2022, 43(7): 55-59.
MA Yunjiao, WANG Lei, PAN Ruru, et al. Calibration method of three-dimensional yarn evenness based on mirrored image[J]. Journal of Textile Research, 2022, 43(7): 55-59.
[20] WANG W, XIN B, DENG N, et al. Objective evaluation on yarn hairiness detection based on multi-view imaging and processing method[J]. Measurement, 2019. DOI: 10.1016/j.measurement.2019.106905.
[21] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
doi: 10.1109/TSMC.1979.4310076
[22] LI Zhongjian, PAN Ruru, WANG Jing'an, et al. Real-time segmentation of yarn images based on an fcm algorithm and intensity gradient analysis[J]. Fibres & Textiles in Eastern Europe, 2016, 24, 4(118): 45-50.
[23] 郑天勇, 崔世忠. 用B样条曲面构建纱线三维模型的研究(Ⅰ):具有不同截面的三维纱线模型的构造[J]. 纺织学报, 2006, 27(2): 1-5.
ZHENG Tianyong, CUI Shizhong. Study on constructing the 3D yarn model by B-spline surface: part Ⅰ: construction of the 3D yarn model with different cross sections[J]. Journal of Textile Research, 2006, 27(2): 1-5.
doi: 10.1177/004051755702700101
[1] 王梦蕾, 王静安, 高卫东. 计算机辅助配棉技术研究进展[J]. 纺织学报, 2023, 44(08): 225-233.
[2] 杨芸, 孙通, 梁振宇, 彭广, 鲍劲松. 基于异构集成学习的棉纱纱疵定量分析方法[J]. 纺织学报, 2023, 44(05): 93-101.
[3] 陶静, 汪俊亮, 徐楚桥, 张洁. 基于视觉校准的环锭纺细纱条干特征在线提取方法[J]. 纺织学报, 2023, 44(04): 70-77.
[4] 张青青, 倪远, 汪军, 张玉泽, 江慧. 转轮集聚纺纱装置与工艺设计[J]. 纺织学报, 2023, 44(02): 83-89.
[5] 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227.
[6] 顾梅花, 刘杰, 李立瑶, 崔琳. 结合特征学习与注意力机制的服装图像分割[J]. 纺织学报, 2022, 43(11): 163-171.
[7] 闵小豹, 潘志娟. 生物质纤维/菠萝叶纤维多组分混纺纱线的品质与性能[J]. 纺织学报, 2022, 43(01): 74-79.
[8] 任维佳, 杜玉红, 左恒力, 袁汝旺. 棉花中异性纤维检测图像分割和边缘检测方法研究进展[J]. 纺织学报, 2021, 42(12): 196-204.
[9] 胡群, 张宁, 潘如如. 应用均值漂移的印花面料交互式换色方法[J]. 纺织学报, 2021, 42(11): 97-102.
[10] 吴佳庆, 王迎, 郝新敏, 宫玉梅, 郭亚飞. 长丝喂入位置对赛络纺包芯纱结构与性能影响[J]. 纺织学报, 2021, 42(08): 64-70.
[11] 郭明华, 刘新金. 基于切断称重法的细纱机牵伸区内纤维变速点分布研究[J]. 纺织学报, 2021, 42(08): 71-75.
[12] 裘柯槟, 陈维国, 周华, 应双双. 成像技术在纺织品颜色测量中的应用进展[J]. 纺织学报, 2020, 41(09): 155-161.
[13] 张缓缓, 赵妍, 景军锋, 李鹏飞. 基于亚像素边缘检测的纱线条干均匀度测量[J]. 纺织学报, 2020, 41(05): 45-49.
[14] 徐启永 胡峰 王传桐 吴雨川. 改进频率调谐显著算法在疵点图像分割中的应用[J]. 纺织学报, 2018, 39(05): 125-131.
[15] 陈晓春 张彦彬 彭虎 陈翔 褚乃清. 重叠纤类图像的凹点匹配和分割算法[J]. 纺织学报, 2017, 38(11): 143-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!