纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 97-105.doi: 10.13475/j.fzxb.20230200201

• 染整工程 • 上一篇    下一篇

颜料与线密度对原液着色涤纶短纤维及纱线颜色的影响

卢韵静1,2, 王雪2, 齐元章3, 宋琳3, 廉志军2, 李鑫4,5()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.中国纺织科学研究院有限公司 生物源纤维制造技术国家重点实验室, 北京 100025
    3.鲁丰织染有限公司, 山东 淄博 255100
    4.中国通用技术(集团)控股有限责任公司, 北京 100161
    5.东华大学 材料科学与工程学院,上海 201620
  • 收稿日期:2023-02-02 修回日期:2023-12-22 出版日期:2024-03-15 发布日期:2024-04-15
  • 通讯作者: 李鑫
  • 作者简介:卢韵静(1994—),女,博士生。主要研究方向为纤维色彩及应用。
  • 基金资助:
    国家重点研发计划项目(2020YFB0311400);国家重点研发计划项目(2016YFB0302800)

Influences of pigment and linear density on spun-dyed polyester staple fiber and yarn

LU Yunjing1,2, WANG Xue2, QI Yuanzhang3, SONG Lin3, LIAN Zhijun2, LI Xin4,5()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. State Key Laboratory of Biobased Fiber Manufacturing Technology, China Textile Academy, Beijing 100025, China
    3. Lufeng Weaving and Dyeing Co., Ltd., Zibo, Shandong 255100, China
    4. China General Technology (Group) Holding Co., Ltd., Beijing 100161, China
    5. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • Received:2023-02-02 Revised:2023-12-22 Published:2024-03-15 Online:2024-04-15
  • Contact: LI Xin

摘要:

为掌握原液着色涤纶短纤维的颜色对其纱线颜色变化的影响规律,选取红、黄、蓝3种颜色半消光原液着色涤纶短纤维,根据实际生产中主要调整的参数,系统研究了颜料质量分数、纤维线密度对其色度值的影响规律;同时,考察了从纤维到纱线(线密度为20 tex,捻系数为300)的色度值变化,并与特定规格半消光染色短纤维、大有光原液着色短纤维进行对比。结果表明:颜料质量分数显著影响半消光纤维的色度值,在浅、中色之间的差异尤为明显,是中、深色之间的2倍;线密度对纤维色差(ΔECMC(2:1))的影响不大,黄色的色差变化较红色、蓝色更明显;半消光原液着色短纤维到纱线的色度值变化不明显,色差在0.8~2.6 范围内;在半消光染色纤维中,黄色的色差变化偏大,为3.4 ~ 3.9,红色、蓝色与原液着色的色差相当;大有光原液着色涤纶短纤维到纱线的变化与半消光染色短纤维的更为相似,二者的色差ΔECMC(2:1)、明度差ΔL、饱和度差ΔC 以及色调差ΔH 基本相同,说明对于特定的颜色类型,可借鉴染色纱线的配色经验,为原液着色纱线配色模型的系数调整提供支持。

关键词: 涤纶短纤维, 原液着色纤维, 颜料, 线密度, 色度值, 纱线配色

Abstract:

Objective The large-scale application of spun-dyed fiber corresponds to multi-spes and differentiated fiber production. However, a long transition cycle when changing the fiber color type or pigment content generates a large amount of transition material or waste in this process due to the generally large capacity of the device. Therefore, it is necessary to understand the influences of pigment type, content, and fiber linear density on the color of spun-dyed fibers, as well as the color variation from fiber to yarn, so as to guide more effectively the development and application of spun-dyed staple fibers.

Method The influences of pigment content (0.3%, 0.9%, and 1.5%) and fiber linear density (1.56, 2.78, 3.89 dtex and 6.11 dtex) on the chromaticity values of semi-dull spun-dyed polyester staple fibers red, yellow, and blue were systematically investigated. In parallel, the variation of chromaticity values from fiber to yarn (linear density of 20 tex, twist factor of 300) was examined and compared with specific specifications of semi-dull dyed staple fibers and bright spun-dyed staple fibers.

Results The results showed that the variation of pigment content significantly affected the chromaticity values of the semi-dull fibers, especially from light-color fiber to medium-color fiber, which is twice as much as between medium-color fiber and dark-color fiber. The chromatic aberration ΔECMC(2:1) for yellow fibers was 21.8 and 8.4, respectively, which is about three times higher than that for red and blue, mainly because of the contribution of the hue difference ΔH. The influence of fiber linear density variation on ΔECMC(2:1) was not significant, and the higher the linear density, the weaker the effect. Similarly, the ΔECMC(2:1) of yellow was more obvious than the other two colors. When producing products such as yellow, especially fine denier fibers, adjusting the linear density required reconfirming the pigment formulation. In general, the variation of chromaticity values from semi-dull spun-dyed staple fiber to yarn was not significant, with ΔECMC(2:1) in the range of 0.8-2.6. On contrast, the variation of chromaticity values of yellow semi-dull dyed staple fiber to yarn was large, with ΔECMC(2:1) in the range of 3.4-3.9. On further examination, the change rate of ΔECMC(2:1) for dyed fibers was 1.8-6.5 CMC(2:1)/dtex, which was significantly higher than that of spun-dyed fibers. It was also evident that the ΔECMC(2:1) of dyed fibers did not show a significant decrease in the change rate of ΔECMC(2:1) with the increase in the linear density of the spun-dyed fibers. The variation of chromaticity values from bright spun-dyed polyester staple fibers to yarn was similar to that of semi-dull dyed staple fibers, and ΔECMC(2:1), ΔL, ΔC, and ΔH were basically the same meaning that for specific color types, the yarn color matching experience of dyed fibers did serve as a reference.

Conclusion The chromaticity values of semi-dull staple fibers vary greatly with pigment types and content ranges. When the pigment content needs to be changed significantly during the production process, the masterbatch should be reformulated. Different fiber linear density ranges have different influences on the chromaticity values of the fibers, and the normalized results suggested that the smaller the linear density, the greater the change rate of ΔECMC(2:1). Among them, the change rate of ΔECMC(2:1) is most obvious for yellow, which is mainly due to larger ΔH, indicating that the adjustment of linear density requires reconfirmation of the masterbatch formulation when producing products such as yellow, especially fine denier fibers. For conventional linear density of semi-dull spun-dyed fibers, the color variation from fiber to yarn is not obvious. However, when the fiber linear density is small enough, such as ultrafine fibers prepared by composite spinning, this result needs to be re-examined. Overall, the change rate of ΔECMC(2:1) of dyed fibers is significantly higher than that of spun-dyed fibers, mainly due to the different chromophores of dyes and pigments. The color variation from fiber to yarn for the bright spun-dyed fibers is essentially the same as that for the semi-dull dyed fibers, implying that the color variation law from semi-dull dyed fibers to yarn can be utilized to guide the yarn color matching of the bright spun-dyed fibers.

Key words: polyester staple fiber, spun-dyed fiber, pigment, linear density, chromaticity value, yarn color matching

中图分类号: 

  • TS102.522

表1

原液着色涤纶短纤维色度值"

纤维编号 L* C* h* 纤维编号 L* C* h*
SS/1.56/0.3/RD 55.0 47.5 23.6 SS/3.89/1.5/YE 69.5 88.7 76.8
SS/1.56/0.9/RD 44.3 59.5 26.2 SS/6.11/1.5/YE 68.5 86.9 76.1
SS/1.56/1.5/RD 40.3 60.5 27.4 SS/1.56/0.3/BU 41.8 32.4 279.6
SS/2.78/1.5/RD 38.1 60.5 28.2 SS/1.56/0.9/BU 27.7 34.7 285.6
SS/3.89/1.5/RD 37.5 59.9 27.8 SS/1.56/1.5/BU 23.1 32.5 288.0
SS/6.11/1.5/RD 36.6 59.4 27.8 SS/2.78/1.5/BU 20.4 30.6 289.5
SS/1.56/0.3/YE 79.7 82.8 88.7 SS/3.89/1.5/BU 19.6 29.3 290.1
SS/1.56/0.9/YE 75.0 88.8 82.3 SS/6.11/1.5/BU 19.4 28.2 290.5
SS/1.56/1.5/YE 72.1 89.3 79.3 SB/1.56/2.8/RD 36.2 58.6 25.0
SS/2.78/1.5/YE 70.4 89.2 78.0 SB/1.56/0.2/YE 75.4 68.9 82.7

表2

染色涤纶短纤维色度值"

纤维编号 L* C* h* 纤维编号 L* C* h*
SS/0.89/RD/D 41.8 62.9 28.3 SS/1.33/YE/D 73.7 69.7 79.4
SS/1.11/RD/D 40.9 62.3 28.3 SS/1.56/YE/D 73.3 71.4 78.7
SS/1.33/RD/D 40.3 62.1 28.4 SS/0.89/BU/D 48.8 36.2 236.7
SS/1.56/RD/D 39.8 63.2 29.1 SS/1.11/BU/D 47.2 36.3 237.3
SS/0.89/YE/D 75.2 68.4 79.3 SS/1.33/BU/D 46.3 36.3 238.5
SS/1.11/YE/D 74.1 69.2 78.0 SS/1.56/BU/D 44.5 36.3 238.9

表3

涤纶短纤维纱线色度值"

纱线编号 L* C* h* 纱线编号 L* C* h*
Y20/300-SS/1.56/0.3/RD 57.0 47.7 23.1 Y20/310-SB/1.56/2.8/RD 38.0 62.0 25.4
Y20/300-SS/1.56/0.9/RD 46.4 59.9 25.5 Y20/310-SB/1.56/0.2/YE 78.3 72.6 80.2
Y20/300-SS/1.56/1.5/RD 42.8 61.4 27.1 Y10/300-SS/0.89/RD/D 44.0 66.9 28.7
Y20/300-SS/2.78/1.5/RD 41.1 61.3 28.2 Y10/300-SS/1.11/RD/D 43.2 65.3 28.5
Y20/300-SS/3.89/1.5/RD 39.5 61.1 28.6 Y10/300-SS/1.33/RD/D 42.7 66.2 29.1
Y20/300-SS/6.11/1.5/RD 39.1 60.9 28.9 Y10/300-SS/1.56/RD/D 42.3 66.1 29.0
Y20/300-SS/1.56/0.3/YE 81.5 83.9 88.4 Y20/300-SS/1.56/RD/D 42.1 65.8 29.1
Y20/300-SS/1.56/0.9/YE 77.4 90.9 83.0 Y10/300-SS/0.89/YE/D 78.4 73.1 77.8
Y20/300-SS/1.56/1.5/YE 74.8 92.8 79.8 Y10/300-SS/1.11/YE/D 77.4 74.1 78.0
Y20/300-SS/2.78/1.5/YE 71.7 92.6 78.4 Y10/300-SS/1.33/YE/D 77.9 74.6 78.0
Y20/300-SS/3.89/1.5/YE 71.1 91.4 76.8 Y10/300-SS/1.56/YE/D 77.2 75.6 77.5
Y20/300-SS/6.11/1.5/YE 70.6 90.1 76.8 Y20/300-SS/1.56/YE/D 77.0 75.5 77.0
Y20/300-SS/1.56/0.3/BU 43.8 32.4 279.6 Y10/300-SS/0.89/BU/D 50.0 37.1 237.7
Y20/300-SS/1.56/0.9/BU 29.9 36.3 285.2 Y10/300-SS/1.11/BU/D 48.6 37.1 237.7
Y20/300-SS/1.56/1.5/BU 25.5 34.1 288.5 Y10/300-SS/1.33/BU/D 48.3 37.2 238.5
Y20/300-SS/2.78/1.5/BU 23.0 35.4 287.2 Y10/300-SS/1.56/BU/D 46.8 37.5 238.7
Y20/300-SS/3.89/1.5/BU 21.8 34.7 289.7 Y20/300-SS/1.56/BU/D 46.9 36.8 238.7
Y20/300-SS/6.11/1.5/BU 21.9 32.8 288.7

表4

不同颜料质量分数的半消光原液着色短纤维(1.56 dtex)色度值变化"

颜料
类型
颜料质量
分数/%
ΔL ΔC ΔH ΔECMC(2:1)
红色 0.3~0.9 -10.7 12.0 2.4 6.9
0.9~1.5 -4.0 1.1 1.2 2.1
黄色 0.3~0.9 -4.7 6.0 -9.5 21.8
0.9~1.5 -2.9 0.6 -4.8 8.4
蓝色 0.3~0.9 -14.1 2.2 3.5 7.8
0.9~1.5 -4.5 -2.2 1.4 3.4

表5

不同线密度的半消光原液着色短纤维(颜料质量分数1.5%)色度值及其色差变化"

颜料
类型
纤维线
密度/dtex
ΔL ΔC ΔH ΔECMC(2:1) 色差
变化率
1.56~2.78 -2.2 -0.1 0.8 1.3 1.1
红色 2.78~3.89 -0.7 -0.6 -0.4 0.5 0.5
3.89~6.11 -0.9 -0.4 0.1 0.5 0.2
1.56~2.78 -1.7 -0.1 -1.9 3.1 2.5
黄色 2.78~3.89 -0.9 -0.5 -1.7 1.7 1.5
3.89~6.11 -1.0 -1.7 -1.1 1.1 0.5
1.56~2.78 -2.7 -1.9 0.8 2.3 1.9
蓝色 2.78~3.89 -0.8 -1.3 0.3 1.0 0.9
3.89~6.11 -0.2 -1.1 0.2 0.6 0.3

表6

不同颜料质量分数及线密度半消光原液着色短纤维到纱线(Y20/300)的色度值变化"

纤维样品编号 ΔL ΔC ΔH ΔECMC(2:1)
SS/1.56/0.3/RD 2.1 0.2 -0.5 1.0
SS/1.56/0.9/RD 2.1 0.4 -0.8 1.2
SS/1.56/1.5/RD 2.5 0.9 -0.3 1.3
SS/2.78/1.5/RD 3.0 0.8 0.3 1.6
SS/3.89/1.5/RD 2.0 1.2 0.5 1.2
SS/6.11/1.5/RD 2.5 1.5 0.1 1.5
SS/1.56/0.3/YE 1.8 1.1 -0.4 0.8
SS/1.56/0.9/YE 2.4 2.1 1.0 1.3
SS/1.56/1.5/YE 2.7 3.4 0.8 1.6
SS/2.78/1.5/YE 2.7 5.3 0.7 2.2
SS/3.89/1.5/YE 1.5 4.5 -0.9 2.1
SS/6.11/1.5/YE 2.1 4.2 1.4 2.6
SS/1.56/0.3/BU 2.0 -0.1 0.0 1.0
SS/1.56/0.9/BU 2.3 1.6 -0.3 1.7
SS/1.56/1.5/BU 2.3 1.6 -0.3 1.9
SS/2.78/1.5/BU 2.6 2.0 -0.6 2.3
SS/3.89/1.5/BU 2.2 2.5 0.5 2.2
SS/6.11/1.5/BU 2.5 1.7 -0.5 2.3

表7

不同线密度的半消光染色短纤维色度值及其色差变化"

颜料
类型
纤维线
密度/dtex
ΔL ΔC ΔH ΔECMC(2:1) 色差
变化率
0.89~1.11 -0.9 -0.6 0.0 0.5 2.3
红色 1.11~1.33 -0.7 -0.2 0.1 0.4 1.8
1.33~1.56 -0.5 1.1 0.8 0.7 3.0
0.89~1.11 -1.2 0.8 -0.3 0.7 3.2
黄色 1.11~1.33 -0.3 0.6 0.8 1.4 6.4
1.33~1.56 -0.4 1.7 -0.8 1.5 6.5
0.89~1.11 -1.6 0.1 0.4 0.8 3.6
蓝色 1.11~1.33 -0.9 -0.1 0.7 0.7 3.2
1.33~1.56 -1.8 0.1 0.3 0.9 3.9

表8

不同线密度半消光染色短纤维到纱线(Y10/300)的色度值变化"

纤维样品编号 ΔL ΔC ΔH ΔECMC(2:1)
SS/0.89/RD/D 2.2 4.1 0.4 1.8
SS/1.11/RD/D 2.3 3.1 0.3 1.6
SS/1.33/RD/D 2.4 4.1 0.7 2.0
SS/1.56/RD/D 2.5 2.9 - 0.3 1.7
SS/0.89/YE/D 3.2 4.7 - 1.9 3.9
SS/1.11/YE/D 3.3 5.2 - 1.8 3.7
SS/1.33/YE/D 4.3 4.9 - 1.7 3.8
SS/1.56/YE/D 3.8 4.3 - 1.6 3.4
SS/0.89/BU/D 1.1 0.2 - 0.4 0.6
SS/1.11/BU/D 1.4 0.8 0.3 0.8
SS/1.33/BU/D 2.0 1.0 0.2 1.1
SS/1.56/BU/D 2.3 1.2 - 0.2 1.3

图1

半消光原液着色短纤维和大有光原液着色短纤维以及半消光染色短纤维的反射率曲线"

表9

原液着色短纤维和半消光染色短纤维到纱线(Y20/300)的色度值变化"

纤维样品编号 ΔL ΔC ΔH ΔECMC(2:1)
SS/1.56/1.5/RD 2.5 0.9 - 0.3 1.3
SB/1.56/2.8/RD 1.8 3.4 0.3 1.6
SS/1.56/RD/D 2.4 2.7 - 0.2 1.6
SS/1.56/0.3/YE 1.8 1.1 - 0.4 0.8
SB/1.56/0.2/YE 2.9 3.7 - 3.0 2.5
SS/1.56/YE/D 3.7 4.1 - 2.3 2.4
[1] 陈磊康, 丁筠, 高旭倩, 等. 不同红颜料对原液着色PA6纤维母粒性能的影响[J]. 工程塑料应用, 2021, 49(1): 125-129.
CHEN Leikang, DING Yun, GAO Xuqian, et al. Effect of red pigments on properties of dope dyeing PA6 fibers[J]. Engineering Plastics Application, 2021, 49(1): 125-129.
[2] 严岩, 潘晓娣, 薛斌. 原液着色黑色涤纶纤维黑度影响因素研究[J]. 合成技术及应用, 2021, 36(4): 28-31.
YAN Yan, PAN Xiaodi, XUE Bin. Study on influence factors of dope dyeing polyester fiber blackness[J]. Synthetic Technology & Application, 2021, 36(4): 28-31.
[3] 陈美玉, 孙润军, 郝新敏. 化纤不同加工方式对着色涤纶长丝颜色的影响[J]. 合成纤维, 2004 (5): 8-9,1.
CHEN Meiyu, SUN Runjun, HAO Xinmin. Influences on the color of spun-dyeing PET filament by different processing ways[J]. Synthetic Fiber in China, 2004 (5): 8-9,1.
[4] 詹莹韬, 李顺希, 钱江莲, 等. 加弹工艺对原液着色涤纶DTY颜色的影响[J]. 合成纤维, 2019, 48(12): 20-23.
ZHAN Yingtao, LI Shunxi, QIAN Jianglian, et al. Influence of draw texturing process on the color of dope dyed PET DTY[J]. Synthetic Fiber in China, 2019, 48(12): 20-23.
[5] 买巍, 丁彩玲, 马崇启, 等. 原液着色纤维在纺纱过程中色差变化影响因素研究[J]. 纺织导报, 2019(10): 52-55.
MAI Wei, DING Cailing, MA Chongqi, et al. Study on the influence factors of chromatic aberration for dope dyeing fibers[J]. China Textile Leader, 2019(10):52-55.
[6] 金佳冰, 卢雨正, 傅佳佳, 等. 原液着色涡流纱与不同捻系数环锭纱的颜色匹配[J]. 服装学报, 2019, 4(6): 484-489.
JIN Jiabing, LU Yuzheng, FU Jiajia, et al. Color matching of vortex yarn and ring spun yarn with different twist coefficients by the composition of spun-dyed fiber[J]. Journal of Clothing Research, 2019, 4(6): 484-489.
[7] 程璐, 葛梦嘉, 曹吉强, 等. 成纱号数与捻系数对色纺纱色差影响的研究[J]. 棉纺织技术, 2020, 48(4): 25-29.
CHENG Lu, GE Mengjia, CAO Jiqiang, et al. Study on the influence of yarn fineness and twist multiplier on color difference of color spun yarn[J]. Cotton Textile Technology, 2020, 48(4): 25-29.
[8] 陈美玉, 施楣梧, 孙润军. 加捻程度对着色涤纶纱线颜色变化规律的影响[J]. 西安工程科技学院学报, 2004 (2): 105-108.
CHEN Meiyu, SHI Meiwu, SUN Runjun. The influence on the color of spun-dyed PET yarns by twist of yarns[J]. Journal of Xi'an University of Engineering Science and Technology, 2004(2): 105-108.
[9] 袁理, 熊莹, 谷迁, 等. 染色纤维与色纺纱线间的颜色传递规律及其影响因素[J]. 纺织学报, 2021, 42(5): 122-129.
YUAN Li, XIONG Ying, GU Qian, et al. Characteristics and factorial study of color transfer between dyed fiber and colored spun yarns[J]. Journal of Textile Research, 2021, 42(5): 122-129.
doi: 10.1177/004051757204200209
[10] 杨瑞华, 潘博, 郭霞, 等. 环锭纺及转杯纺和喷气涡流纺混色纱的纤维混合效果研究[J]. 纺织学报, 2021, 42(7): 76-81,88.
YANG Ruihua, PAN Bo, GUO Xia, et al. Study on fiber mixing effect in ring spun, rotor and air-jet-vortex spun color blended yarns[J]. Journal of Textile Research, 2021, 42(7): 76-81,88.
[11] 宋伟广, 王冬, 杜长森, 等. 自分散酞菁蓝15:3的制备及其在粘胶纤维原液着色中的应用[J]. 纺织学报, 2021, 42(10):8-14.
SONG Weiguang, WANG Dong, DU Changsen, et al. Preparation of self-dispersing phthalocyanine blue 15:3 particles and its application in spun-dyed viscose fiber[J]. Journal of Textile Research, 2021, 42(10): 8-14.
[12] 邱靖斯, 刘越. 分散染料的细化分散及其对粒径影响研究进展[J]. 纺织学报, 2021, 42(8):194-201.
QIU Jingsi, LIU Yue. Research progress in superfine dispersion of disperse dyes and its effect on particle size[J]. Journal of Textile Research, 2021, 42(8): 194-201
[13] 奉辉, 陈俊, 王朋, 等. 二氧化钛的相对散射力[J]. 涂料工业, 2003 (7): 9-11.
FENG Hui, CHEN Jun, WANG Peng, et al. The relative scattering force of TiO2[J]. Paint & Coatings Industry, 2003(7): 9-11.
[14] WANG Jiping, CHENG Wenqing, GAO Yuanyuan, et al. Mechanism of accelerant on disperse dyeing for PET fiber in the silicone solvent dyeing system[J]. Polymers, 2019, 11(3): 520-528.
doi: 10.3390/polym11030520
[15] 宋心远. 结构生色和染整加工(四)[J]. 印染, 2005 (20): 37-42.
SONG Xinyuan. Structural coloration and its application in dyeing and finishing (Ⅳ)[J]. China Dyeing & Finishing, 2005 (20): 37-42.
[1] 苏婧, 关玉, 付少海. 单分散聚苯乙烯和聚(苯乙烯-co-苯乙烯磺酸钠)乳胶粒的制备及其喷墨流畅性[J]. 纺织学报, 2023, 44(05): 13-20.
[2] 郭明瑞, 高卫东. 环锭数码纺纱线特征参数及其对织物外观影响[J]. 纺织学报, 2022, 43(11): 41-45.
[3] 李杨, 彭来湖, 郑秋扬, 胡旭东. 基于分数阶模型的纱线蠕变性能模拟与预测[J]. 纺织学报, 2022, 43(11): 46-51.
[4] 靳宏, 张玥, 张玉梅, 王华平. 基于分子模拟预判Lyocell纤维原液着色体系中溶剂的稳定性[J]. 纺织学报, 2021, 42(10): 1-7.
[5] 宋伟广, 王冬, 杜长森, 梁栋, 付少海. 自分散酞菁蓝15:3的制备及其在粘胶纤维原液着色中的应用[J]. 纺织学报, 2021, 42(10): 8-14.
[6] 汪芬萍, 李家炜, 黄骅隽, 吴金丹, 付少海, 戚栋明, 赵磊, 何贵平. 纺织品着色用有机颜料改性技术的研究进展[J]. 纺织学报, 2021, 42(07): 192-200.
[7] 曹根阳, 王运利, 盛丹, 潘恒, 徐卫林. 丝素粉体/颜料复合体耐热真空升华色牢度提升机制[J]. 纺织学报, 2021, 42(02): 1-6.
[8] 陈智杰, 胡旭东, 黄卓, 宋丽苗, 戚栋明, 向忠. 基于细乳液法含硅颜料胶囊的制备及其对涤纶的印花性能[J]. 纺织学报, 2019, 40(08): 69-75.
[9] 陈智杰, 周鹏, 杜春晓, 金黔宏, 戚栋明, 向忠. 丙烯酸酯-有机硅/有机颜料亚微胶囊在涂料印花中的应用[J]. 纺织学报, 2019, 40(03): 102-108.
[10] 黄继伟, 宁晚娥, 张锋, 左保齐. 基于组合学的茧丝落绪分拆模拟与分析[J]. 纺织学报, 2019, 40(01): 32-39.
[11] 刘素素 姜蕾 隋晓锋 毛志平 徐红 张琳萍 钟毅. 水性聚氨酯-丙烯酸酯包覆颜料色浆在涂料染色中的应用[J]. 纺织学报, 2018, 39(09): 71-76.
[12] 晏江 邱华 李永贵. 旋流喷嘴对不同线密度纱线的作用机制[J]. 纺织学报, 2018, 39(03): 38-44.
[13] 刘铭 张丽平 张敏 王晓春 赵国樑 王轩 唐星辰 杨中开. 铁黄颜料的表面改性及其在超高分子量聚乙烯中的应用[J]. 纺织学报, 2018, 39(02): 86-90.
[14] 陈智杰 吴明华 史鹤鹤 曹志海 戚栋明 金黔宏. 涂料印染用自黏性有机颜料亚微胶囊的细乳液法制备[J]. 纺织学报, 2017, 38(03): 91-98.
[15] 苏玉恒 孔繁荣. 采用窗函数的棉纤维线密度分布表征[J]. 纺织学报, 2017, 38(01): 46-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!