纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 151-159.doi: 10.13475/j.fzxb.20220802501

• 染整工程 • 上一篇    下一篇

SiO2/聚乙二醇200/碳纳米管剪切增稠液浸渍芳纶织物及其复合材料防刺性能

贾笑娅, 王蕊宁(), 孙润军   

  1. 西安工程大学 纺织科学与工程学院, 陕西 西安 710048
  • 收稿日期:2023-04-09 修回日期:2023-11-30 出版日期:2024-04-15 发布日期:2024-05-13
  • 通讯作者: 王蕊宁(1977—),女,高级工程师,博士。主要研究方向为功能防护材料。E-mail:wangruining123@163.com。
  • 作者简介:贾笑娅(1995—),女,硕士。主要研究方向为剪切增稠液及其复合材料防刺性能。
  • 基金资助:
    陕西省教育厅重点科学研究计划项目(20JS049)

Preparation and stab-resistance of composites fabricated by aramid fabric impregnated with SiO2/poly(ethylene glycol)200/ multi-walled carbon nanotube shear thickening solution

JIA Xiaoya, WANG Ruining(), SUN Runjun   

  1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2023-04-09 Revised:2023-11-30 Published:2024-04-15 Online:2024-05-13

摘要:

为优化高性能织物的防刺性能,采用SiO2和不同长径比的多壁碳纳米管(MWCNTs)制备多相剪切增稠液(MSTFs), 研究MWCNTs的长径比与添加量对剪切增稠液流变性能的影响及MSTFs芳纶复合织物的防刺性能。之后将MSTFs复合织物与碳化硅/聚氨酯(SiC/TPU)涂层织物叠层制备双层防刺复合材料,探究叠层顺序对层合复合材料抗穿刺性能的影响。结果得出:长径比较大的碳纳米管对提高剪切增稠液(STF)的增稠效果更优;随着碳纳米管含量的增加,剪切增稠效果逐渐增强。实验结果表明:MSTFs(0.4% MWCNTs-A)浸渍芳纶织物的最大穿刺载荷较纯STF浸渍芳纶织物提高154.33%;不同叠层结构中以剪切增稠液浸渍织物为面层、SiC/TPU涂层织物为背层的双层复合织物表现出更优的防刺性能。

关键词: 多壁碳纳米管, 多相剪切增稠液, 流变, 叠层结构, 防刺复合材料, 芳纶织物

Abstract:

Objective In recent years, flexible stab-resistant materials have gradually replaced traditional hard stab-resistant materials, and high-performance fabrics become an important research object for flexible stab-resistant materials. In order to optimize the stab resistance of high-performance fabrics, reduce the number of stacked layers and the quality, it is necessary to prepare composites with both flexibility and stab resistance properties.

Method In this study, multi-phase shear thickening fluids (MSTFs) were prepared by polyethylene glycol 200, SiO2 and multi-walled carbon nanotubes (MWCNTs), and the effects of the aspect ratio and addition amount of MWCNTs on rheological properties of STF were studied. A MSTFs composite fabric was prepared by dipping and drying, and a composite fabric was fabricated by coated silicon carbide/thermoplastic polyure-thanes(SiC/TPU) on the aramid fabric. Yarn pull-out test and quasi-static stab test were conducted to evaluate the stab resistance of the composite fabrics. In addition, double layer composite fabrics with the two different composite fabrics were prepared to investigate the effect of the stacking sequence on the stab resistance.

Results The study shows that the carbon nanotubes with larger aspect ratio were better in improving the thickening effect of STF, the maximal viscosity of MSTFs(0.4%MWCNTs-A) increased by 52 Pa·s over MSTFs(0.4% MWCNTs-B). and with the increase of the content of MWCNTs, the critical shear rate of the MSTFs became smaller, and the maximum viscosity value was gradually increased. In addition, from the results of yarn pulling-out test and the quasi-static stab resistance test, the performance of composite fabrics were seen to be improved greatly compared to neat fabrics. The MSTFs composite fabrics have more interyarn friction than the pure 68%STF composite fabric, and with the increase of the MWCNTs addition in the MSTFs, the maximum pull-out load between the yarns of the composite fabric increases first and then decreases, and the friction between yarns of MSTFs composite fabric is related to the yarn pull-out speed. the study found a pronounced effect of the MSTFs on the ability of stab resistance was noticed, the maximum puncture load of MSTFs composite fabrics was greater than that of the pure 68%STF composite fabric under unit areal density, and the maximum puncture load demonstrated a gradual increase as the content of MWCNTs increased in MSTFs. However, When the content of MWCNTs is 0.6%, the initial viscosity of MSTF was larger, the weight-growth rate of the composite fabric was increased, and most of the liquid remained on the surface of the fabric, affecting the performance of the composite fabric. According to the experiments, the penetration velocity of tested long nails was 25 mm/min, the maximum puncture load of MSTFs(0.4% MWCNTs-A)-impregnated aramid fabric was 154.33% higher than that of pure 68%STF-impregnated aramid fabric. In the experiments to explore the influence of the laminated structure of different composite materials on the anti-stab performance, the study found that, the double-layer fabrics which the shear thickening liquid impregnated fabric as the surface layer and the SiC/TPU coated fabric as the back layer (S/T) has the biggest maximum puncture load, which is 786.26% higher than that of the double-layer pure fabric.

Conclusion The study shows that the addition of MWCNTs improve the rheological properties of MSTFs, and the fabrics impregnated with MSTFs optimize the stab resistance performance of neat aramid fabrics effectively. When the fabric is impacted, the viscosity of MSTFs increases quickly, and composite fabric has a tighter bond between the fibers, further improving the puncture resistance of composite fabrics. Moreover, experiments show that since the stab-proof mechanism of MSTFs composite fabric and SiC/TPU coated fabric is not exactly the same, the laminated composites of shear thickening liquid impregnated fabric as the surface layer and SiC/TPU coated fabric as the back layer demonstrates excellent puncture resistance performance, offering ideas for design of the laminated structure of the multi-layer stab-resistant material.

Key words: multi-walled carbon nanotubes (MWCNTs), multiphase shear thickening fluids (MSTFs), rheological, layered structure, puncture resistant composite, aramid fabric

中图分类号: 

  • TB540

表1

STF浸渍芳纶、MSTFs(MWCNTS-A)浸渍芳纶及SiC/TPU涂层织物的质量增加率"

样品
编号
处理方法 整理剂 质量增
加率/%
F 未处理 -
S1 浸渍 66%STF 75.32
S2 浸渍 68%STF 89.48
S3 浸渍 70%STF 71.67
S4 浸渍 MSTFs(0.2%MWCNTs-A) 91.20
S5 浸渍 MSTFs(0.4%MWCNTs-A) 125.90
S6 浸渍 MSTFs(0.6%MWCNTs-A) 124.40
T 涂层 3%SiC/TPU 23.40
F/F 未处理
T/T 涂层 3%SiC/TPU 21.90
T/S 涂层/浸渍 3%SiC/TPU+MSTFs(0.4%MWCNTs-A) 78.76
S/T 浸渍/涂层 MSTFs(0.4%MWCNTs-A)+3%SiC/TPU 71.14
S/S 浸渍 MSTFs(0.4%MWCNTs-A) 137.90

图1

分散相的SEM照片(×50 000)"

表2

多壁碳纳米管的规格参数"

添加剂 内径/nm 外径/nm 长度/μm
MWCNTs-A 5~10 10~30 10~30
MWCNTs-B 5~15 >50 10~20

图2

纯芳纶织物、STF浸渍芳纶复合织物、MSTFs浸渍芳纶复合织物和SiC/TPU涂层织物表面SEM照片"

图3

不同质量分数SiO2的STF稳态流变曲线"

图4

68% STF和不同MSTFs的稳态流变曲线"

图5

STF与MSTFs的模量变化曲线"

图6

纱线拔出载荷-位移曲线及最大拔出载荷"

图7

芳纶织物、STF和MSTFs复合织物在不同拔出速度下的拔出载荷-位移曲线"

图8

准静态钉刺测试结果"

图9

单层纯芳纶织物、STF及MSTFs芳纶复合织物和涂层织物的穿刺形貌照片"

图10

双层复合织物的穿刺形貌照片"

[1] 左向春, 王瑞岭, 刘腾龙, 等. 防弹无纬布复合材料的现状[J]. 玻璃钢/复合材料, 2010(5): 81-83.
ZUO Xiangchun, WANG Ruiling, LIU Tenglong, et al. The development of ballistic composite material[J]. Fiber Reinforced Plastics/Composites, 2010(5):81-83.
[2] ZHANG X, LI T T, PENG H K, et al. Enhanced sandwich structure composite with shear thickening fluid and thermoplastic polyurethanes for high-performance stab resistance[J]. Composite Structures, 2022, 280: 1-7.
[3] GRILLIOT W, GRILLIOT M. Protective garment containing puncture-resistant and/or forearm portions: US005729832A[P]. 1998-5-24.
[4] HE Q, CAO S, WANG Y, et al. Impact resistance of shear thickening fluid/kevlar composite treated with shear-stiffening gel[J]. Composites Part A: Applied Science and Manufacturing, 2018, 106: 82-90.
[5] KIM H, NAM I. Stab resisting behavior of polymeric resin reinforced p-aramid fabrics[J]. Journal of Applied Polymer Science, 2012, 123(5): 2733-2742.
[6] 陆振乾, 许玥. 剪切增稠液浸渍超高分子量聚乙烯织物的防锥刺性能[J]. 纺织学报, 2018, 39(10): 58-62, 67.
doi: 10.13475/j.fzxb.20180101706
LU Zhenqian, XU Yue. Study on stab-resistant performance of shear thickening fluids impregnated ultra-high-molecular-weight polyethylene fabric[J]. Journal of Textile Research, 2018, 39(10): 58-62, 67.
doi: 10.13475/j.fzxb.20180101706
[7] DECKER M J, HALBACH C J, NAM C H, et al. Stab resistance of shear thickening fluid (STF)-treated fabrics[J]. Composites Science and Technology, 2007, 67(3/4): 565-578.
[8] GURGEN S, KUSHAN M C. The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives[J]. Composites Part A: Applied Science and Manufacturing, 2017, 94: 50-60.
[9] GURGEN S, KUSHAN M C, LI W. The effect of carbide particle additives on rheology of shear thickening fluids[J]. Korea-Australia Rheology Journal, 2016, 28(2): 121-128.
[10] WANG F, AN C, JIA Q. Effect of multi-phase STF on the high-speed impact performance of shear-thickening fluid (STF)-impregnated kevlar composite fabrics[J]. Journal of Physics: Conference Series, 2021, 1759(1): 1-7.
[11] 田明月, 王蕊宁, 孙润军, 等. UHMWPE织物/剪切增稠液防刺复合材料的制备及性能[J]. 高分子材料科学与工程, 2020, 36(11): 109-116.
TIAN Mingyue, WANG Ruining, SUN Runjun, et al. Preparation and properties of UHMWPE fabric/shear thickening liquid stab resistant composites[J]. Polymer Materials Science & Engineering, 2020, 36(11): 109-116.
[12] 王新厚, 张琳梅, 孙晓霞. 柔性防刺涤纶/碳化硅织物的制备及其防刺性能[J]. 纺织学报, 2019, 40(6): 172-176, 182.
WANG Xinhou, ZHANG Linmei, SUN Xiaoxia. Preparation of flexible puncture-proof polyester/SiC and puncture-proof property[J]. Journal of Textile Research, 2019, 40(6): 172-176, 182.
[13] 张政. 硬质SiC粒子涂层防刺织物的制备及防刺性能的研究[D]. 上海: 东华大学, 2018:12-22.
ZHANG Zheng. Preparation and stab-resistant properties of hard SiC particle-coated stab-resistant fabrics[D]. Shanghai: Donghua University, 2018:12-22.
[14] 夏民民, 谷秋瑾, 权震震, 等. 碳化硼涂层防刺织物的制备及其性能表征[J]. 产业用纺织品, 2020, 38(11): 21-28.
XIA Minmin, GU Qiujin, QUAN Zhenzhen, et al. Preparation and characterization of B4C coated stab-resistant fabrics[J]. Technical Textiles, 2020, 38(11): 21-28.
[15] NAYAK R, KANESALINGAM S, WANG L, et al. Stab resistance and thermophysiological comfort properties of boron carbide coated aramid and ballistic nylon fabrics[J]. The Journal of The Textile Institute, 2018, 110(8): 1159-1168.
[16] 贾笑娅, 王蕊宁, 胡华斌, 等. 碳化硅/聚氨酯涂层织物的制备及其防刺性能[J]. 印染, 2022, 48(8): 13-16.
JIA Xiaoya, WANG Ruining, HU Huabin, et al. Preparation of silicon carbide/polyurethane coated fabric and its stab resistance[J]. China Dyeing & Finishing, 2022, 48(8): 13-16.
[17] LIU X Q, BAO R Y, WU X J, et al. Temperature induced gelation transition of a fumed silica/PEG shear thickening fluid[J]. RSC Advances, 2015, 5(24): 18367-1837.
[1] 魏义慧, 张宇静, 邓辉话, 邓庆辉, 陈浩锵, 张须臻, 于斌, 朱斐超. 高熔融指数聚乙烯母粒的制备及其红外透射熔喷材料的可纺性[J]. 纺织学报, 2024, 45(02): 28-35.
[2] 刘亚, 赵晨, 庄旭品, 赵义侠, 程博闻. 基于Polyflow模拟的茂金属聚乙烯纺黏长丝制备及其性能[J]. 纺织学报, 2023, 44(12): 1-9.
[3] 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176.
[4] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[5] 杨潇东, 于斌, 孙辉, 朱斐超, 刘鹏. 聚乙烯三氟氯乙烯熔喷非织造材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(02): 19-26.
[6] 张宇静, 陈连节, 张思东, 张强, 黄瑞杰, 叶翔宇, 汪伦合, 宣晓雅, 于斌, 朱斐超. 高熔融指数聚乳酸母粒的制备及其熔喷材料的可纺性[J]. 纺织学报, 2023, 44(02): 55-62.
[7] 冯冰冰, 刘艳春, 周天池, 白刚. 分散染料免蒸洗印花糊料的制备及其性能[J]. 纺织学报, 2022, 43(01): 161-166.
[8] 牟浩蕾, 解江, 裴惠, 冯振宇, 耿宏章. 芳纶织物及其包容环的弹道冲击与数值模拟[J]. 纺织学报, 2021, 42(11): 56-63.
[9] 邱志成, 李鑫, 李志勇, 王颖, 金剑, 武术方. 原位法连续聚合聚酯/炭黑体系的结构与性能[J]. 纺织学报, 2021, 42(10): 15-21.
[10] 陈亚丽, 赵国猛, 任李培, 潘露琪, 陈贝, 肖杏芳, 徐卫林. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(08): 115-121.
[11] 张倩玉, 秦志刚, 阎若思, 贾立霞. 剪切增稠液/纤维复合材料防弹性能的研究进展[J]. 纺织学报, 2021, 42(06): 180-188.
[12] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[13] 陈洁如, 邱诗苑, 杨青青, 周熠. 基于可调张力装置的芳纶织物交织阻力研究[J]. 纺织学报, 2021, 42(01): 67-72.
[14] 夏云, 吕汪洋, 陈文兴. 模拟太阳光下金属酞菁/多壁碳纳米管催化降解染料[J]. 纺织学报, 2020, 41(12): 94-101.
[15] 李美真, 赵士毅, 冯艳丽, 郭晓卿, 于晓庆. F-12芳纶织物输送带的制备及其性能[J]. 纺织学报, 2020, 41(12): 87-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!