纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 211-220.doi: 10.13475/j.fzxb.20221106801

• 机械与设备 • 上一篇    下一篇

纺织典型装备故障多特征自适应提取方法

任杰1,2,3, 张洁1,3(), 汪俊亮1,3   

  1. 1.东华大学 人工智能研究院, 上海 201620
    2.东华大学 机械工程学院, 上海 201620
    3.东华大学 纺织工业人工智能技术教育部工程研究中心, 上海 201620
  • 收稿日期:2022-11-06 修回日期:2023-12-20 出版日期:2024-04-15 发布日期:2024-05-13
  • 通讯作者: 张洁(1963—),女,教授,博士。主要研究方向为智能制造与机器人、大数据智能、机器认知学习、复杂系统建模与控制。E-mail:mezhangjie@dhu.edu.cn。
  • 作者简介:任杰(1989—),男,博士生。主要研究方向为工业大数据、化纤设备故障诊断及预测。
  • 基金资助:
    山东省重点研发计划项目(2021CXGC011004);国家自然科学基金面上项目(52375485);国家自然科学基金面上项目(52275478);新疆维吾尔自治区重点研发计划项目(2022B01057-1)

Multi-fault feature adaptive extraction method for textile typical equipment

REN Jie1,2,3, ZHANG Jie1,3(), WANG Junliang1,3   

  1. 1. Institute of Artificial Intelligence, Donghua University, Shanghai 201620, China
    2. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    3. Engineering Research Center of Artificial Intelligence for Textile Industry, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2022-11-06 Revised:2023-12-20 Published:2024-04-15 Online:2024-05-13

摘要:

化纤高速卷绕头故障特征提取是卷绕头故障诊断中的关键步骤。为解决化纤卷绕头故障诊断精度不高、可解释性差的难点,提出了数据驱动的化纤卷绕头故障多特征自适应提取方法。通过改进型基因表达式编程(GEP)的故障特征生成方法,设计了一种运算符与变量符随机组合编码、对位匹配与倒序运算解码方法,构建了突变、插串、重组的遗传算子,实现了多个故障特征构建与生成;提出了低冗余、高互补的多特征提取与分析方法,实现了特征间关系的可解释性分析与关键特征优选。实验结果表明:采用所提出的改进型GEP方法与传统特征提取方法、通用GEP方法所生成的故障特征进行对比,在线速度为1 000、2 000和3 000 m/min状态下,卷绕头故障诊断精度分别提升了8.959%、3.87%、3.77%和2.601%、3.2%、2.018%,有效解决了卷绕头故障特征提取的难题;进一步的特征工程实验表明,所提方法对于多特征组合下的卷绕头故障关键特征提取具有较强的适应性能。

关键词: 故障特征提取, 基因表达式编程, 优势特征选择, 自适应, 卷绕头, 仪纤生产线

Abstract:

Objective Chemical fiber winder is the core equipment in chemical fiber production. The failure of winder will seriously affect the quality and production efficiency of chemical fiber products, so it is necessary to accurately diagnose the fault of chemical fiber winder. Fault feature extraction is the premise of winder fault diagnosis. It is mainly divided into empirical knowledge-based methods and data-driven methods. Aiming at the problem of low accuracy of empirical knowledge features in fault diagnosis of winder and poor interpretability of data-driven features, this paper proposes a data-driven method for adaptive extraction of multiple fault features of chemical fiber winder.

Method The proposed adaptive feature extraction method of chemical fiber winder fault based on improved gene expression programming (GEP) with multi-fault feature correlation analysis and subset evaluation method, which includes gene encoding and decoding of feature initialization, feature subset correlation analysis and decision tree evaluation, roulette screening and Elite retention strategies, feature optimization method based on genetic evolution. Among them, the multi-feature correlation analysis method is combined with the experience and knowledge features to select the advantages of strong correlation, low redundancy and high complementarity. When the last iteration is completed, the dominant feature subset output forms the final feature.

Results In order to verify the effectiveness of the proposed improved GEP feature extraction method in industrial applications, the measured vibration data of POY-1800 winder in a chemical fiber enterprise in Zhejiang province are used to test the performance of the proposed feature extraction method. The fault characteristics of 14 winders in the production process of one kind of fiber are extracted. The vibration acceleration sensor was used to collect the vibration data during the rotation of the winder, and the feature extraction test was carried out under the instantaneous linear speed of 1 000 m/min, 2 000 m/min and 3 000 m/min. The sampling frequency is 51 200 Hz, and the collection time of each class is 1 s. There are 4 categories in total, each of which is a binary classification task. The verification was carried out by using the multi-round cycle data set, and the original data was processed in segments according to every 20 points. The number of individuals in the population is set to 100, the number of iterations is 50, and the outermost cycle is 3 rounds to set the optimal individual retention mechanism. In the experiment, the proposed method was compared with the method based on empirical knowledge features and the general GEP method without using multi-feature association analysis. The extracted features are input into the classifier formed by C4.5 decision tree algorithm, and the effect of each method is compared by classification accuracy. To facilitate the observation of the results, the average classification accuracy AVG and the BEST classification accuracy best during GEP are recorded. The experimental results show that compared with the fault features generated by the traditional feature extraction method and the general GEP method, under the line speed of the winder in 1 000 m/min, 2 000 m/min, 3 000 m/min, the fault diagnosis accuracy of the proposed improved GEP method is increased by 8.959%, 3.87%, 3.77% respectively 2.601%, 3.2%, 2.018% respectively, which effectively solves the problem of fault feature extraction of the winder.

Conclusion In this study, a data-driven multi-fault feature adaptive extraction method for chemical winder is proposed. Contrast experiment results demonstrate the proposed GEP-based interpretable feature extraction method with experience and knowledge features is effective in improving the accuracy of fault diagnosis; The outcomes of classification accuracy at various speeds illustrate the proposed multi-feature correlation analysis method is validate in augmenting the adaptability of winding scenarios; Subsequent experimental results in feature engineering affirm the proposed enhanced GEP feature extraction method is effective in diagnosing multiple faults of chemical fiber winders.

Key words: fault feature extraction, gene expression programming, feature selection, adaptive, winder, chemical fiber production line

中图分类号: 

  • TH133.33

图1

卷绕卡头结构及传感器位置图"

图2

卷绕卡头故障特征提取改进GEP方法流程"

图3

编码过程示意图"

图4

解码过程示意图"

图5

基于决策树的特征子集评价示意图"

图6

基于轮盘赌与优势子集保留的特征选择过程"

图7

基于遗传进化的特征优化示意图"

图8

数据预处理前后对比"

表1

卷绕头数据集多标签分类"

卡头
编号
6004轴
承标签
带轴轴承
(近端)标签
带轴轴承
(远端)故障
弯曲故障
标签
1 故障 故障 故障 正常
2 正常 正常 正常 正常
3 故障 正常 故障 故障
4 故障 正常 正常 故障
5 故障 正常 正常 故障
6 故障 故障 故障 正常
7 故障 正常 正常 正常
8 正常 故障 正常 正常
9 故障 故障 正常 正常
10 故障 故障 正常 正常
11 正常 故障 故障 正常
12 故障 正常 正常 正常
13 故障 故障 正常 正常
14 故障 正常 正常 正常

表2

卷绕头实验相关参数"

线速度/
(m·min-1)
转速/
(r·s-1)
采样点数/
(点·圈-1)
单位分割
长度点
分割
段数
1 000 40 1 280 20 64
2 000 79 648 20 32
3 000 119 430 20 21

图9

5个相对优势GEP特征混淆矩阵"

图10

5个相对劣势GEP特征混淆矩阵"

[1] 石梓琪. 数据驱动的卷绕机卡头健康状态趋势预测方法[D]. 上海: 东华大学, 2022: 1-5.
SHI Ziqi. Data-driven method for predicting the health state and trend of winder chucks[D]. Shanghai: Donghua University, 2022: 1-5.
[2] 雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5): 94-104.
doi: 10.3901/JME.2018.05.094
LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data[J]. Journal of Mechanical Engineering, 2018, 54(5): 94-104.
doi: 10.3901/JME.2018.05.094
[3] 李益兵, 曹睿, 江丽. 基于稀疏滤波和长短期记忆网络的旋转机械故障诊断方法[J]. 振动与冲击, 2022, 41(19): 144-151,187.
LI Yibing, CAO Rui, JIANG Li. Fault diagnosis method of rotating machinery based on sparse filtering and long-short term memory network[J]. Journal of Vibration and Shock, 2022, 41(19): 144-151,187.
[4] 彭程程. 基于二阶瞬态提取变换的滚动轴承故障特征提取方法研究[J]. 机电工程, 2021, 38(10): 1246-1252.
PENG Chengcheng. Fault feature extraction method for rolling bearing based on STET[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(10): 1246-1252.
[5] 朱亚军, 胡建钦, 李武, 等. 基于频域窗函数的短时傅里叶变换及其在机械冲击特征提取中的应用[J]. 机床与液压, 2021, 49(18): 177-182.
doi: 10.3969/j.issn.1001-3881.2021.18.035
ZHU Yajun, HU Jianqin, LI Wu, et al. Short-time fourier transform based on frequency-domain window function and its application in mechanical impulse feature extraction[J]. Machine Tool & Hydraulics, 2021, 49(18): 177-182.
[6] 田赛, 姚斌, 陈彬强, 等. 基于Morlet小波和改进峭度的滚动轴承故障诊断方法[J]. 工具技术, 2022, 56(10): 141-146.
TIAN Sai, YAO Bin, CHEN Binqiang, et al. Fault diagnosis of rolling bearing based on morlet wavelet and improved kurtosis[J]. Tool Engineering, 2022, 56(10): 141-146.
[7] 张政, 孙华刚, 冯广斌. 履带车辆变速箱振动特性分析及实验研究[J]. 高技术通讯, 2021, 31(9): 993-1000.
ZHANG Zheng, SUN Huagang, FENG Guangbin. Vibration characteristics analysis of tracked vehicle gearbox and experimental research[J]. Chinese High Technology Letters, 2021, 31(9): 993-1000.
[8] WANG Ruixin, JIANG Hongkai, ZHU Ke, et al. A deep feature enhanced reinforcement learning method for rolling bearing fault diagnosis[J]. Advanced Engineering Informatics, 2022(10):54-68.
[9] 曹现刚, 张鑫媛, 吴少杰, 等. 基于小波包神经网络的轴承故障识别模型[J]. 机床与液压, 2019, 47(5): 174-179.
doi: 10.3969/j.issn.1001-3881.2019.05.040
CAO Xiangang, ZHANG Xinyuan, WU Shaojie, et al. Bearing fault identification model based on wavelet packet neural network[J]. Machine Tool & Hydraulics, 2019, 47(5): 174-179.
[10] 沈长青, 汤盛浩, 江星星, 等. 独立自适应学习率优化深度信念网络在轴承故障诊断中的应用研究[J]. 机械工程学报, 2019, 55(7): 81-88.
doi: 10.3901/JME.2019.07.081
SHEN Changqing, TANG Shenghao, JIANG Xingxing, et al. Bearings fault diagnosis based on improved deep belief network by self-individual adaptive learing rate[J]. Journal of Mechanical Engineering, 2019, 55(7): 81-88.
doi: 10.3901/JME.2019.07.081
[11] FERREIRA Candida. Gene expression programming: a new adaptive algorithm for solving problems[J]. Complex Systems, 2001 (13): 87-129.
[12] 王亚娟, 宋广红. 基于GEP算法和马尔科夫链的地震等级预测模型[J]. 信息技术与信息化, 2017(12): 61-63.
WANG Yajuan, SONG Guanghong. Earthquake rank forecasting modeling based on GEP algorithm and Markov chain[J]. Information Technology and Informatization, 2017(12): 61-63.
[13] 代璐. 基于三维机器视觉的空气舵焊接路径规划方法研究[D]. 上海: 东华大学, 2019:1-50.
DAI Lu. Research on air rudder welding path planning method based on 3D machine vision[D]. Shanghai: Donghua University, 2019:1-50.
[14] QIU Haobo, NIU Yingchun, SHANG Jie, et al. A piecewise method for bearing remaining useful life estimation using temporal convolutional networks[J]. Journal of Manufacturing Systems, 2023, 68(2): 227-241.
[1] 彭来湖, 侯良美, 齐育宝, 汝欣, 刘建廷. 基于自适应Loess的纱线张力信号处理方法[J]. 纺织学报, 2024, 45(02): 246-254.
[2] 许高平, 孙以泽. 移动机械臂牵引卷装纱线的动态建模与控制[J]. 纺织学报, 2024, 45(01): 1-11.
[3] 黄晨静, 张蕾, 孙逊, 王晓华. 基于动力学模型的面料抓取机械臂轨迹跟踪控制方法[J]. 纺织学报, 2023, 44(06): 207-214.
[4] 陈志昊, 包文杰, 李富才, 静波, 黄朝林, 孙建文. 基于快速自适应经验模态分解的高速经编机振动分析[J]. 纺织学报, 2023, 44(04): 204-211.
[5] 贾静, 曹竟文, 徐平华, 林瑞冰, 孙晓婉. 基于京剧脸谱意象色彩的服饰纹样自动配色[J]. 纺织学报, 2022, 43(12): 160-166.
[6] 蒋林军, 张华. 无传感参数自适应纱线卷绕张力控制方法[J]. 纺织学报, 2022, 43(04): 167-173.
[7] 谢子昂, 杜劲松, 赵国华. 衬衫吊挂流水线的自适应动态调度[J]. 纺织学报, 2020, 41(10): 144-149.
[8] 周虎, 刘涛, 高金杰, 周强, 罗滨鸿, 游政, 苏炳望, 巴拉. 手工地毯植绒机轨迹规划及其速度控制优化[J]. 纺织学报, 2019, 40(10): 177-182.
[9] 王文帝, 辛斌杰, 邓娜, 李佳平, 刘宁娟. 单一视角下自适应阈值法的纱线毛羽识别及其应用[J]. 纺织学报, 2019, 40(05): 150-156.
[10] 徐洋, 朱治潮, 盛晓伟, 余智祺, 孙以泽. 基于机器视觉的鞋面特征点自动识别改进方法[J]. 纺织学报, 2019, 40(03): 168-174.
[11] 杜帅, 李岳阳, 王孟涛, 罗海驰, 蒋高明. 基于改进局部自适应对比法的织物疵点检测[J]. 纺织学报, 2019, 40(02): 38-44.
[12] 孙巧妍, 陈祥光, 刘美娜, 孙玉梅, 辛斌杰. 基于毛羽补偿与自适应中值滤波的纱线主体图像识别算法[J]. 纺织学报, 2019, 40(01): 62-66.
[13] 胡克满, 罗少龙, 胡海燕. 应用Canny算子的织物疵点检测改进算法[J]. 纺织学报, 2019, 40(01): 153-158.
[14] 马颜雪 李毓陵 刘梦佳 李雅倩 杨馨. 整体褶裥机织面料的织造新方法[J]. 纺织学报, 2018, 39(04): 42-46.
[15] 张波 汤春明. 基于相对总变差模型与自适应形态学的织物瑕疵检测[J]. 纺织学报, 2017, 38(05): 145-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!