纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 221-228.doi: 10.13475/j.fzxb.20221006101

• 机械与设备 • 上一篇    下一篇

双组分织物含水率的微波谐振腔法测量技术

向忠, 赵唯, 何仕伟, 王宇航, 钱淼()   

  1. 浙江理工大学 浙江省现代纺织装备技术重点实验室, 浙江 杭州 310018
  • 收稿日期:2022-10-28 修回日期:2023-12-25 出版日期:2024-04-15 发布日期:2024-05-13
  • 通讯作者: 钱淼(1987—),男,副教授,博士。研究方向为智能机电与能源装备设计与制造。E-mail:meqiaomiao@zstu.edu.cn。
  • 作者简介:向忠(1982—),男,教授,博士。主要研究方向为纺织工业制造设备的设计和开发。
  • 基金资助:
    国家自然科学基金项目(51605443);浙江省“尖兵”“领雁”研发攻关计划项目(2023C01158);浙江省“尖兵领雁+X”研发攻关计划项目(2024C01222);浙江省“尖兵领雁+X”研发攻关计划项目(2024C03118);浙江理工大学基本科研业务费专项资金资助项目(22242298-Y)

Moisture content measurement technology of two-component fabrics by microwave resonant cavity method

XIANG Zhong, ZHAO Wei, HE Shiwei, WANG Yuhang, QIAN Miao()   

  1. Zhejiang Provincial Key Laboratory of Modern Textile Equipment Technology, Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310018, China
  • Received:2022-10-28 Revised:2023-12-25 Published:2024-04-15 Online:2024-05-13

摘要:

针对染整过程中多组分织物含水率准确检测问题,提出了一套基于微波谐振腔法的织物含水率检测系统。首先,基于Bruggeman-Hanai介电混合模型,结合织物结构特征建立了单组分织物含水率与介电常数的关系模型;通过考虑织物厚度与多组分织物组分配比的影响,建立了双组分织物含水率介电常数模型。接着,开展湿度均匀的纯棉、涤纶、混纺织物的介电常数测量实验,采用贝塞尔拟合方法,得到双组分织物介电常数模型的系数,从而获得了不同材质、厚度、组分配比下织物含水率与介电常数的关系模型。通过比较实验织物样品含水率与理论模型预测结果发现,二者吻合较好,均方根误差小于5%,从而验证了双组分织物含水率介电模型的可行性,为后续纺织品含水率检测提供技术支撑。

关键词: 织物, 含水率, 微波谐振腔技术, 介电常数, 数学模型

Abstract:

Objective For detecting the moisture content of fabric accurately, it is critical to understanding the relationship between moisture content and dielectric constant of fabrics. The objective of this study is to establish the relationship between moisture content and dielectric constant for two-component fabrics with different materials, thicknesses and component ratios, aiming for accurate measurement of moisture content in different types of textiles.

Method Based on the Bruggeman-Hanai dielectric mixing model, the relationship between the dielectric constant model of water content of two-component fabric was developed by considering the influence of fabric thickness and the pro-portion of multi-component fabric components under different material, thickness and component ratio was obtained. The dielectric constant measurement experiments of cotton, chemical fiber and blended fabric with uniform humidity were carried out, and the coefficient of the dielectric constant model of the two-component fabric was obtained.

Results For the theoretical prediction model, when the depolarization factor coefficient of pure cotton fabric L1=0.35 and the depolarization factor coefficient of chemical fiber fabric L2=0.23, the comparison results of the moisture content prediction model of pure cotton and chemical fiber cloth and experimental data were able to be obtained. The root mean square error(RMSE)calculation was carried out and it was found that the theoretical model RMSE of different fabric materials was less than 3%, and hence the prediction on the relationship between moisture content and dielectric constant, for pure cotton and chemical fiber fabrics, was proven reliable. When the cotton fabric coefficient C1 (the ratio of the thickness coefficient of pure cotton fabric to its thickness) was 1.475, B1 (the correction factor for pure cotton fabric)was 0.683 3; and when polyester fiber fabric C2 (the ratio of the thickness coefficient of blending textiles to their thickness)was 1.567, and B2(the correction factor for synthetic fabrics) was 0.743 2. For cotton fabrics, the RMSE ≤4.6%. Comparison of the prediction results of the model to the experimental results showed that the model enabled a good prediction on the permittivity related to the thickness of cotton fabrics. For chemical fiber fabrics where RMSE ≤ 3.8%, the prediction of fabrics with larger thickness and lower moisture content was not as good. However, when the moisture content of the fabric was greater than 3%, the prediction was generally better. When the determinant of blended fabric α =0.67, for fabrics with cotton content between 20%-35%, the prediction results of the two-component fabric theoretical model were close to the experimental results, and the prediction was better.

Conclusion In order to accurately measure the moisture content of fabrics with different materials, varying thickness and diversified components, this research explores the influence of changes in fabric material, thickness and composition ratio on moisture content and permittivity based on the microwave resonator method, and then establishes a theoretical model of fabric moisture content permittivity. After comparing and analyzing the predicted value of the model and the experimental value, results show that the model has good prediction accuracy, the RMSE is less than 5%.

Key words: fabric, moisture content, resonant cavity, dielectric constant, mathematical model

中图分类号: 

  • TS101.8

图1

分离式介质谐振器结构"

图2

HFSS仿真图"

表1

面料的结构参数"

面料
编号
原料 组织 厚度/
mm
密度/(根·(10 cm)-1)
经密 纬密
1# 纯棉 平纹 0.21 304 236
2# 65%涤纶+35%棉 平纹 0.20 578 312
3# 80%涤纶+20%棉 平纹 0.18 597 341
4# 涤纶 平纹 0.16 429 307

图3

混纺结构模拟图"

图4

双组分厚度织物介电常数分析思路"

图5

单组分织物介电常数预测与实验结果对比图"

表2

不同织物层数的厚度值"

层数 纯棉织物厚度 涤纶织物厚度
单层 0.21 0.16
双层 0.41 0.31
三层 0.62 0.44

图6

单组分织物厚度相关预测实验对比图"

表3

干燥双组分织物介电常数预测误差"

材质 介电常数
预测值
介电常数
实验值
相对
误差/%
纯棉 1.211 1.211 0
65%涤纶+35%棉 1.140 1.200 5
80%涤纶+20%棉 1.129 1.189 5
涤纶 1.110 1.110 0

图7

不同配比织物含水率介电特性"

图8

混纺织物含水率预测与实验结果对比图"

[1] IQBAL M, SOHAIL M, ALEEM A, et al. Textile environmental conditioning: effect of relative humidity variation on the tensile properties of different fabrics[J]. Journal of Analytical Sciences, Methods and Instrumentation, 2012, 2(2): 92.
[2] 王建君. 纺织纤维水分测试方法研究与应用[D]. 长沙: 湖南大学, 2007:11-14.
WANG Jianjun. Research and application of textile fiber moisture test method[D]. Changsha: Hunan University, 2007:11-14.
[3] FREDRISSON M, WADSÖ L, JOHANSSON P. Small resistive wood moisture sensors: a method for moisture content determination in wood structures[J]. European Journal of Wood and Wood Products, 2013, 71(4): 515-524.
[4] AFZAL A, MOUSAVI S F, KHADEM M. Estimation of leaf moisture content by measuring the capacitance[J]. Journal of Agricultural Science and Technology, 2010, 12(3): 339-346.
[5] CLEVE E, BACH E, SCHOLLMEYER E. Using chemometric methods and NIR spectrophotometry in the textile industry[J]. Analytica Chimica Acta, 2000, 420(2): 163-167.
[6] BRUGGEMAN. Calculation of various physics constants in heterogeneous substances: I dielectricity constants and conductivity of mixed bodies from isotropic substances[J]. Annalen Der Physik, 1935, 416 (7): 636-664.
[7] LINDELL ISMO V, SIHVOLA A H. Electromagnetic boundary conditions defined in terms of normal field components[J]. IEEE Transactions on Antennas and Propagation, 2009, 58: 1128-1135.
[8] SIHVOLA A H. Electromagntic mixing formulas and applications[J]. IEEE Antennas and Propagation Magazine, 1999, 42(3):72-73.
[9] POUROVA M, ZAJICEK R, OPPL L, et al. Measurement of dielectric properties of moisture tex-tile[C]// 2008 14th Conference on Microwave Techniques. Piscataway: Czech Republic, 2008: 111-114.
[10] 景军锋, 孙乐, 李鹏飞. 基于微波技术的织物含水率测量方法[J]. 纺织学报, 2012, 33(9): 61-65.
JING Junfeng, SUN Le, LI Pengfei. A method for measuring the moisture content of fabrics based on microwave technology[J]. Journal of Textile Research, 2012, 33(9): 61-65.
[11] 齐翀. 微波透射法织物含水率测量系统研究与实现[D]. 杭州: 浙江理工大学, 2019:15-18.
QI Chong. Research and implementation of microwave transmission method for fabric moisture content measuring[D]. Hangzhou: Zhejiang Sci-Tech University, 2019:15-18.
[12] ZHAO T. Effective medium modeling and experimental characterization of multilayer dielectric with periodic inclusion[D]. Iowa, US: Iowa State University, 2015:6-9.
[13] ZHENG S M, ZOU Z Y, SHEN W, et al. A study of the fiber distribution in yarn cross section for vortex-spun yarn[J]. Textile Research Journal, 2012, 82(15): 1579-1586.
[1] 向娇娇, 柳浩, 欧阳申珅, 马万彬, 柴丽琴, 周岚, 邵建中, 刘国金. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(04): 111-119.
[2] 王晓萌, 李婷婷, 许炳铨, 林佳弘, 楼静文. 耐用多功能光热阻燃织物的制备及应用[J]. 纺织学报, 2024, 45(04): 120-125.
[3] 胡自强, 骆晓蕾, 魏璐琳, 刘琳. 植酸/壳聚糖对涤纶/棉混纺织物的协同阻燃整理[J]. 纺织学报, 2024, 45(04): 126-135.
[4] 朱维维, 舒伟, 顾文娟. 负载不同极性药物对粘胶织物结构和性能的影响[J]. 纺织学报, 2024, 45(04): 136-141.
[5] 邵明军, 蹇玉兰, 唐唯, 柴希娟, 万辉, 解林坤. 涤纶织物表面耐久超疏水涂层制备及其水油分离性能[J]. 纺织学报, 2024, 45(04): 142-150.
[6] 贾笑娅, 王蕊宁, 孙润军. SiO2/聚乙二醇200/碳纳米管剪切增稠液浸渍芳纶织物及其复合材料防刺性能[J]. 纺织学报, 2024, 45(04): 151-159.
[7] 张永芳, 郭红, 史晟, 阎智锋, 侯文生. 涤纶/棉混纺织物在水热体系中的降解[J]. 纺织学报, 2024, 45(04): 160-168.
[8] 卿星, 肖晴, 陈斌, 李沐芳, 王栋. 纤维晶体管器件研究进展[J]. 纺织学报, 2024, 45(04): 33-40.
[9] 丁倩, 吴俊霖, 江慧, 汪军. 阻燃腈纶/酚醛树脂纤维织物的制备及其性能[J]. 纺织学报, 2024, 45(04): 83-88.
[10] 冯亚, 孙颖, 崔艳超, 刘梁森, 张宏亮, 胡俊军, 居傲, 陈利. 含镍铬合金丝纬编电加热层复合材料的层间剪切性能[J]. 纺织学报, 2024, 45(04): 89-95.
[11] 王振华, 张周强, 昝杰, 刘江浩. 基于多尺度Laws纹理能量和低秩分解的织物疵点检测算法[J]. 纺织学报, 2024, 45(04): 96-104.
[12] 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113.
[13] 陈锟, 许晶莹, 郑怡倩, 李加林, 洪兴华. 丝网印刷还原氧化石墨烯改性蚕丝织物的导电与电热性能[J]. 纺织学报, 2024, 45(03): 122-128.
[14] 马莹, 陈奡, 胡月鹏, 潘俊, 胡瀚杰, 禄盛. 芳纶平纹织物单纱抽拔力学性能分析[J]. 纺织学报, 2024, 45(03): 58-64.
[15] 丁彩红, 顾馨, 卢晨雨. 血管支架预制件的六角形三维虚拟编织[J]. 纺织学报, 2024, 45(03): 65-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!