纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 229-237.doi: 10.13475/j.fzxb.20230700402
李朝威1, 成悦1, 苏新1, 陈鹏飞1, 李大伟1,2, 付译鋆1,2()
LI Chaowei1, CHENG Yue1, SU Xin1, CHEN Pengfei1, LI Dawei1,2, FU Yijun1,2()
摘要:
为促进聚偏氟乙烯(PVDF)基纳米纤维在生物医学领域的应用,首先阐述了PVDF压电效应产生的关键在于其偶极子的取向排列,进一步以PVDF纳米纤维为研究对象,分析了纳米纤维的偶极子与纤维表面极性电荷的键合作用机制;归纳总结了随机分布型、取向排列型、中空以及图案化PVDF纳米纤维的结构调控;重点讨论了石墨烯、氧化锌、钛酸钡以及碳纳米管等各种掺杂材料对静电纺PVDF复合纳米纤维薄膜压电性能的影响,并详细介绍了其在伤口敷料、药物载体以及组织工程等生物医学领域的应用。研究指出结构调控和添加剂掺杂以及2种方法的组合是提高PVDF压电性能的有效方法,有望进一步拓展PVDF基纳米复合压电材料在生物医学领域中的应用。
中图分类号:
[1] | ZVIAGIN A S, CHERNOZEM R V, SURMENEVA M A, et al. Enhanced piezoelectric response of hybrid biodegradable 3D poly(3-hydroxybutyrate) scaffolds coated with hydrothermally deposited ZnO for biomedical applications[J]. European Polymer Journal, 2019, 117: 272-279. |
[2] | ALHASSSAN Z A, BUREZQ Y S, NAIR R, et al. Polyvinylidene difluoride piezoelectric electrospun nanofibers: review in synthesis, fabrication, characterizations, and applications[J]. Journal of Nanomaterials, 2018, 2018: 1-12. |
[3] | JEONG C K, HAN J H, PALNEEDI H, et al. Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film[J]. APL Materials, 2017. DOI: 10.1063/1.4976803. |
[4] |
CHEN X, HAN M, CHEN H, et al. A wave-shaped hybrid piezoelectric and triboelectric nanogenerator based on P(VDF-TrFE) nanofibers[J]. Nanoscale, 2017, 9(3): 1263-1270.
doi: 10.1039/c6nr07781a pmid: 28054695 |
[5] | HE Z, RAULT F, LEWANDOWSKI M, et al. Electrospun PVDF nanofibers for piezoelectric applications: a review of the influence of electrospinning parameters on the β phase and crystallinity enhance-ment[J]. Polymers, 2021. DOI: 10.3390/polym13020174. |
[6] | KALIMULDINA G, TURDAKYN N, ABAY I, et al. A review of piezoelectric PVDF film by electrospinning and its applications[J]. Sensors, 2020. DOI: 10.3390/s20185214. |
[7] |
LOVINGER A J. Ferroelectric polymers[J]. Science, 1983, 220(4602): 1115-1121.
pmid: 17818472 |
[8] | SANYAL A, SINHA-RAY S. Ultrafine PVDF nanofibers for filtration of air-borne particulate matters: a comprehensive review[J]. Polymers, 2021. DOI: 10.3390/polym13111864. |
[9] | BAE J H, CHANG S H. PVDF-based ferroelectric polymers and dielectric elastomers for sensor and actuator applications: a review[J]. Functional Composites & Structures, 2019. DOI: 10.1088/2631-6331/ab0f48. |
[10] | ZHANG S, AN Q. Progress on the design and fabrication of high performance piezoelectric flexible materials based on polyvinylidene fluoride[J]. Chemical Journal of Chinese Universities, 2021. DOI: 10.7503/cjcu20200636. |
[11] | CAI J, HU N, WU L, et al. Preparing carbon black/graphene/PVDF-HFP hybrid composite films of high piezoelectricity for energy harvesting technology[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 223-231. |
[12] | ZHANG C, WEI W, SUN H, et al. Performance enhancements in poly(vinylidene fluoride)-based piezoelectric films prepared by the extrusion-casting process[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(17): 21837-21847. |
[13] | FENG Y, LI J L, LI W L, et al. Effect of BaTiO3 nanowire distribution on the dielectric and energy storage performance of double-layer PVDF-based compo-sites[J]. Composites Part A: Applied Science and Manufacturing, 2019. DOI: 10.1016/j.compositesa.2019.105524. |
[14] | KULKARNI N D, KUMARI P. Development of highly flexible PVDF-TiO2 nanocomposites for piezoelectric nanogenerator applications[J]. Materials Research Bulletin, 2023. DOI: 10.1016/j.materresbull.2022.112039. |
[15] | CHEN N Y, ZHAO J, SHI L, et al. Fabrication of PVDF ultrafiltration membrane using modified thermally induced phase separation: the role of amphiphilic and hydrophilic non-solvents[J]. Journal of Membrane Science, 2023. DOI: 10.1016/j.memsci.2023.121919. |
[16] | JIYONG H, YINDA Z, HELE Z, et al. Mixed effect of main electrospinning parameters on the β-phase crystallinity of electrospun PVDF nanofibers[J]. Smart Materials and Structures, 2017. DOI: 10.1088/1361-665X/aa7245. |
[17] | CHEN L, SI Y, ZHU H, et al. A study on the fabrication of porous PVDF membranes by in-situ elimination and their applications in separating oil/water mixtures and nano-emulsions[J]. Journal of Membrane Science, 2016, 520: 760-768. |
[18] | GUO Y, ZHANG H, ZHONG Y, et al. Triboelectric nanogenerator-based near-field electrospinning system for optimizing PVDF fibers with high piezoelectric performance[J]. ACS Applied Materials & Interfaces, 2023, 15(4): 5242-5252. |
[19] | HSIEH C H, CHIU W M, TSAI H W, et al. Electrospun graphene oxide-polyvinylidene fluoride composite film preparation and application for air filtration[J]. Modern Physics Letters B, 2023. DOI: 10.1142/S0217984923400183. |
[20] | LI D, GAO X, CAO M, et al. High-performance nano-TiO2@polyvinylidene fluoride composite separators prepared by electrospinning for safe lithium-ion battery[J]. Journal of Applied Polymer Science, 2023. DOI: 10.1002/app.53618. |
[21] | PURUSHOTHAMAN A E, THAKUR K, KANDASUBRAMANIAN B. Development of highly porous, electrostatic force assisted nanofiber fabrication for biological applications[J]. International Journal of Polymeric Materials, 2019, 69(8): 1-28. |
[22] | XIN Y, ZHU J, SUN H, et al. A brief review on piezoelectric PVDF nanofibers prepared by electrospinning[J]. Ferroelectrics, 2018, 526(1): 140-151. |
[23] | MOHAMMADI B, YOUSEFI A A, BELLAH S M. Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films[J]. Polymer Testing, 2007, 26: 42-50. |
[24] | MOKHTARI F, LATIFI M, SHAMSHIRSAZ M. Electrospinning/electrospray of polyvinylidene fluo-ride (PVDF): piezoelectric nanofibers[J]. Journal of The Textile Institute, 2016, 107: 1037-1055. |
[25] | LIN Y, ZHANG Y, ZHANG F, et al. Studies on the electrostatic effects of stretched PVDF films and nanofibers[J]. Nanoscale Research Letters, 2021. DOI: 10.1186/s11671-021-03536-9. |
[26] | DARESTANI M T, CHILCOTT T C, COSTER H G L. Electrical impedance spectroscopy study of piezoelectric PVDF membranes[J]. Journal of Solid State Electrochemistry, 2014, 18(3): 595-605. |
[27] | LI Y, TANG S D, PAN M W, et al. Polymorphic extended-chain and folded-chain crystals in poly(vinylidene fluoride) achieved by combination of high pressure and ion-dipole interaction[J]. Macromolecules, 2015, 48(23): 8565-8573. |
[28] | XIN Y, ZHU J F, SUN H S, et al. A brief review on piezoelectric PVDF nanofibers prepared by electrospinning[J]. Ferroelectrics, 2018, 526(1): 140-151. |
[29] | HWANGBO S, KANG J M, MIN W M, et al. Preparation of β-phase poly(vinylidene fluoride) films on aluminum substrate with the addition of hydrated metal salts[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(3):1824-1828. |
[30] | WANG A N, CHEN C F, LIAO L C, et al. Enhanced β-Phase in direct ink writing PVDF thin films by intercalation of graphene[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(5): 1497-1502. |
[31] | KIM M, FAN J T. Piezoelectric properties of three types of PVDF and ZnO nanofibrous composites[J]. Advanced Fiber Materials, 2021, 3(3): 160-171. |
[32] | GUO S, DUAN X, XIE M, et al. Composites, fabrication and application of polyvinylidene fluoride for flexible electromechanical devices: a review[J]. Micromachines, 2020. DOI: 10.3390/mi11121076. |
[33] | GUAN X C, ZHANG Y D, LI H, et al. PZT/PVDF composites doped with carbon nanotubes[J]. Sensors and Actuators A: Physical, 2013, 194: 228-231. |
[34] | YOUSRY Y M, YAO K, CHEN S T, et al. Mechanisms for enhancing polarization orientation and piezoelectric parameters of PVDF nanofibers[J]. Advanced Electronic Materials, 2018. DOI: 10.1002/aelm.201700562. |
[35] | SINGH R K, LYE S W, MIAO J. Holistic investigation of the electrospinning parameters for high percentage of β-phase in PVDF nanofibers[J]. Polymer, 2021. DOI: 10.1016/j.polymer.2020.123366. |
[36] | HAIDER S, AL-ZEGHAYER Y, AHMED ALI F A, et al. Highly aligned narrow diameter chitosan electrospun nanofibers[J]. Journal of Polymer Research, 2013. DOI: 10.1007/s10965-013-0105-9. |
[37] | GHEIBI A, BAGHERZADEH R, MERATI A A, et al. Electrical power generation from piezoelectric electrospun nanofibers membranes: electrospinning parameters optimization and effect of membranes thickness on output electrical voltage[J]. Journal of Polymer Research, 2014. DOI: 10.1007/s10965-014-0571-8. |
[38] | UHLJAR L, AMBRUS R. Electrospinning of potential medical devices (wound dressings, tissue engineering scaffolds, face masks) and their regulatory app-roach[J]. Pharmaceutics, 2023. DOI: 10.3390/pharmaceutics15020417. |
[39] | 吴倩倩, 李珂, 杨立双, 等. 载药聚偏氟乙烯伤口敷料的制备及其性能[J]. 纺织学报, 2020, 41(1): 26-31. |
WU Qianqian, LI Ke, YANG Lishuang, et al. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings[J]. Journal of Textile Research, 2020, 41(1): 26-31. | |
[40] | 吴倩倩, 李珂, 杨立双, 等. PVDF/SiO2复合纳米纤维膜的制备及性能研究[J]. 南通大学学报(自然科学版), 2019, 18(4): 83-88. |
WU Qianqian, LI Ke, YANG Lishuang, et al. Preparation and properties of PVDF/SiO2 composite nanofiber membranes[J]. Journal of Nantong Univer-sity (Natural Science Edition), 2019, 18(4): 83-88. | |
[41] | LEE Y S, ARINZEH, LIVINGSTON T. Electrospun nanofibrous materials for neural tissue engineering[J]. Polymers, 2011, 3(1): 413-426. |
[42] |
MOTAMEDI A S, MIRZADEH H, HAJIESMAEILBAIGI F, et al. Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds[J]. Progress in Biomaterials, 2017, 6(3): 113-123.
doi: 10.1007/s40204-017-0071-0 pmid: 28895062 |
[43] |
ZHANG M, LIU C, LI B, et al. Electrospun PVDF-based piezoelectric nanofibers: materials, structures, and applications[J]. Nanoscale Advances, 2023, 5(4): 1043-1059.
doi: 10.1039/d2na00773h pmid: 36798499 |
[44] | 宋岩华. 静电纺取向复合导电纳米纤维的制备及其性能研究[D]. 苏州: 苏州大学, 2018: 8-11. |
SONG Yanhua. Preparation and properties of aligned conductive composite nanofibers by electrospinning[D]. Suzhou: Soochow University, 2018: 8-11. | |
[45] | KANG S B, WON S H, IM M J, et al. Enhanced piezoresponse of highly aligned electrospun poly(vinylidene fluoride) nanofibers[J]. Nanotechno-logy, 2017. DOI: 10.1088/1361-6528/aa7f6b. |
[46] | 蒋莉. 静电纺聚偏氟乙烯高取向纤维膜的制备与表征[D]. 天津: 天津理工大学, 2018: 32-36. |
JIANG Li. Preparation and characterization of highly oriented polyvinylidene fluoride fiber fembrane[D]. Tianjin: Tianjin University of Technology, 2018: 32-36. | |
[47] | LAI Y C, WU H C, PAN C T, et al. Co-axially electrospun PVDF fibers with hollow wall to enhance potential output[C]// Proceedings of the 2014 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). Piscataway: IEEE, 2014: 614-617. |
[48] | YU G F, YAN X, YU M, et al. Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization[J]. Nanoscale, 2016, 8(5): 2944-2950. |
[49] | YUAN X, LI W, LIU H, et al. A novel PVDF/graphene composite membrane based on electrospun nanofibrous film for oil/water emulsion separation[J]. Composites Communications, 2016, 2: 5-8. |
[50] | FAKHRI P, AMINI B, BAGHERZADEH R, et al. Flexible hybrid structure piezoelectric nanogenerator based on ZnO nanorod/PVDF nanofibers with improved output[J]. RSC Advances, 2019, 9(18): 10117-10123. |
[51] | FU Y, CHENG Y, CHEN C, et al. Study on preparation process and enhanced piezoelectric performance of pine-needle-like ZnO@PVDF composite nanofibers[J]. Polymer Testing, 2022. DOI: 10.1016/j.polymertesting.2022.107513. |
[52] | LEE C, WOOD D, EDMONDSON D, et al. Electrospun uniaxially-aligned composite nanofibers as highly-efficient piezoelectric material[J]. Ceramics International, 2016, 42(2): 2734-2740. |
[53] | YU H, HUANG T, LU M, et al. Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity[J]. Nanotechnology, 2013. DOI: 10.1088/0957-4484/24/40/405401. |
[54] |
ALALHA W, DROR Y, KHALFIN R L, et al. Single-walled carbon nanotubes embedded in oriented polymeric nanofibers by electrospinning[J]. Langmuir, 2004, 20(22): 9852-9855.
doi: 10.1021/la048536b pmid: 15491224 |
[55] | MAITY K, MANDAL D. All-Organic high-performance piezoelectric nanogenerator with multilayer assembled electrospun nanofiber nats for self-powered multifunctional sensors[J]. ACS Applied Materials & Interfaces, 2018, 10(21): 18257-18269. |
[56] | LI Y, XU M H, XIA Y S, et al. Multilayer assembly of electrospun/electrosprayed PVDF-based nanofibers and beads with enhanced piezoelectricity and high sensiti-vity[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.124205. |
[57] | YU C, XU Z X, HAO Y H, et al. A novel microcurrent dressing for wound healing in a rat skin defect model[J]. Military Medical Research, 2019. DOI: 10.1186/s40779-019-0213-x. |
[58] | WANG A, LIU Z, HU M, et al. Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing[J]. Nano Energy, 2018, 43: 63-71. |
[59] |
HUU V A, LUO J, ZHU J, et al. Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye[J]. Journal of Controlled Release, 2015, 200: 71-77.
doi: 10.1016/j.jconrel.2015.01.001 pmid: 25571784 |
[60] | IMANIFARD S, ZARRABI A, ZAREPOUR A, et al. Nanoengineered thermoresponsive magnetic nanoparticles for drug controlled release[J]. Macromolecular Chemistry and Physics, 2017. DOI: 10.1002/macp.201700350. |
[61] |
WEAVER C L, LAROSA J M, LUO X, et al. Electrically controlled drug delivery from graphene oxide nanocomposite films[J]. ACS Nano, 2014, 8(2): 1834-1843.
doi: 10.1021/nn406223e pmid: 24428340 |
[62] | JARIWALA T, ICO G, TAI Y, et al. Mechano-responsive piezoelectric nanofiber as an on-demand drug delivery vehicle[J]. ACS Applied Bio Materials, 2021. DOI: 10.1021/acsabm.1c00232. |
[63] | RIBEIRO C, SENCADAS V, CORREIA D M, et al. Piezoelectric polymers as biomaterials for tissue engineering applications[J]. Colloids and Surfaces B: Biointerfaces, 2015, 136: 46-55. |
[64] |
RAJABI A H, JAFFE M, ARINZEH T L. Piezoelectric materials for tissue regeneration: a review[J]. Acta Biomaterialia, 2015, 24: 12-23.
doi: 10.1016/j.actbio.2015.07.010 pmid: 26162587 |
[65] | MOKHTARI F, AZIMI B, SALEHI M, et al. Recent advances of polymer-based piezoelectric composites for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021. DOI: 10.1016/j.jmbbm.2021.104669. |
[66] | DAS R, ELI J L E, THINH T Awale, et al. Biodegradable nanofiber bone-tissue scaffold as remotely-controlled and self-powering electrical stimulator[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2020.105028. |
[67] |
DAMARAJU S M, SHEN Y, ELELE E, et al. Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation[J]. Biomaterials, 2017, 149: 51-62.
doi: S0142-9612(17)30609-9 pmid: 28992510 |
[68] | TAN F, XU X, DENG T, et al. Fabrication of positively charged poly(ethylene glycol)-diacrylate hydrogel as a bone tissue engineering scaffold[J]. Biomedical Materials, 2012. DOI: 10.1088/1748-6041/7/5/055009. |
[69] |
PäRSSINEN J, HAMMARÉN H, RAHIKAINEN R, et al. Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride)[J]. Journal of Biomedical Materials Research Part A, 2015, 103(3): 919-928.
doi: 10.1002/jbm.a.35234 pmid: 24838756 |
[70] | ZHAO F, WANG J, GUO H, et al. The effects of surface properties of nanostructured bone repair materials on their performances[J]. Journal of Nanomaterials, 2015, 2015: 1-11. |
[71] | AZADIAN E, ARJMAND B, ARDESHIRYLAJIMI A, et al. Polyvinyl alcohol modified polyvinylidene fluoride-graphene oxide scaffold promotes osteogenic differentiation potential of human induced pluripotent stem cells[J]. Journal of Cellular Biochemistry, 2020, 121(5/6): 3185-3196. |
[72] | ADADI N, YADID M, GAL I, et al. Electrospun fibrous PVDF-TrFe scaffolds for cardiac tissue engineering, differentiation, and maturation[J]. Advanced Materials Technologies, 2020. DOI: 10.1002/admt.201900820. |
[1] | 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23. |
[2] | 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32. |
[3] | 贾琳, 董晓, 王西贤, 张海霞, 覃小红. 聚己内酯/MgO复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(04): 59-66. |
[4] | 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75. |
[5] | 杨琪, 邓南平, 程博闻, 康卫民. 树枝状磺化聚醚砜纤维基复合固态电解质的制备及其性能[J]. 纺织学报, 2024, 45(03): 1-10. |
[6] | 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22. |
[7] | 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55. |
[8] | 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64. |
[9] | 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16. |
[10] | 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25. |
[11] | 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26. |
[12] | 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224. |
[13] | 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35. |
[14] | 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73. |
[15] | 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23. |
|