纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 41-49.doi: 10.13475/j.fzxb.20231000902
• 纺织科技新见解学术沙龙专栏:绿色功能与智能纺织品 • 上一篇 下一篇
WANG Ning1, GONG Wei2, WANG Hongzhi1()
摘要:
伴随着人们对智能穿戴的需求日益增加,为解决可穿戴电子产品的供能问题,各种能源转化技术接连涌现,摩擦电纺织品凭借其在低频机械能收集和自驱动传感器等方面的优异表现脱颖而出,成为能源织物领域的佼佼者。为提高摩擦电纺织品的能量转换效率与舒适自然的穿戴感,基于摩擦电技术的理论,探讨了接触起电的物理机制,从材料、结构、运行模式以及功能性等角度出发,总结了纱线基摩擦纳米发电机、织物基摩擦纳米发电机与非织造布基摩擦纳米发电机的发展历程,综述了摩擦电纤维在柔性传感、电子皮肤、智能机器人、交互式设备等领域的应用情况,指出目前摩擦电纺织品所面临的挑战以及未来的机遇,以期为摩擦电技术与传统纺织业的高值化结合提供一些理论参考。
中图分类号:
[1] | GAO W, EMAMINEJAD S, NYEIN H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016, 529(7587): 509-514. |
[2] |
KIM J, CAMPBELL A S, AVILA B E F. Wearable biosensors for healthcare monitoring[J]. Nature Biotechnology, 2019, 37(4): 389-406.
doi: 10.1038/s41587-019-0045-y pmid: 30804534 |
[3] |
LIU Y, PHARR M, SALVATORE G A. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring[J]. ACS Nano, 2017, 11(10): 9614-9635.
doi: 10.1021/acsnano.7b04898 pmid: 28901746 |
[4] | YUN Y, MOON S, KIM S, et al. Flexible fabric-based GaAs thin-film solar cell for wearable energy harvesting applications[J]. Solar Energy Materials and Solar Cells, 2022. DOI: 10.1016/j.solmat.2022.111930. |
[5] | PU X, SONG W, LIU M, et al. Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells[J]. Advanced Energy Materials, 2016. DOI: 10.1002/aenm.201601048. |
[6] | MOTLAGH M S, MOTTAGHITALAB V. The charge transport characterization of the polyaniline coated carbon fabric as a novel textile based counter electrode for flexible dye-sensitized solar cell[J]. Electrochimica Acta, 2017, 249: 308-317. |
[7] | NEWBY S, MIRIHANAGE W, FERNANDO A. Recent advancements in thermoelectric generators for smart textile application[J]. Materials Today Communications, 2022. DOI: 10.1016/j.mtcomm.2022.104585. |
[8] | HOU Y, YANG Y, WANG Z, et al. Whole fabric-assisted thermoelectric devices for wearable electronics[J]. Advanced Science, 2022. DOI: 10.1002/advs.202103574. |
[9] | SUN T, ZHOU B, ZHENG Q, et al. Stretchable fabric generates electric power from woven thermoelectric fibers[J]. Nature Communications, 2020. DOI: 10.1038/s41467-020-14399-6. |
[10] | PARK N H, KIM J, AHN Y. Fabric-based self-pumping, single-stream microfluidic fuel cell[J]. Electrochimica Acta, 2023. DOI: 10.1016/j.electacta.2023.142106. |
[11] | YUAN W, ZHOU B, HU J, et al. Passive direct methanol fuel cell using woven carbon fiber fabric as mass transfer control medium[J]. International Journal of Hydrogen Energy, 2015, 40(5): 2326-2333. |
[12] | CAGLAR A, SAHAN B, SAYIN A G, et al. The advanced polymer composite coated fabrics as an anode electrode and photocatalytic glucose micro fuel cell design[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023. DOI: 10.1016/j.jphotochem.2023.115005. |
[13] | ZHI C, SHI S, SI Y, et al. Recent progress of wearable piezoelectric pressure sensors based on nanofibers, yarns, and their fabrics via electrospinning[J]. Advanced Materials Technologies, 2023. DOI: 10.1002/admt.202201161. |
[14] | WAN X, CONG H, JIANG G, et al. A review on PVDF nanofibers in textiles for flexible piezoelectric sensors[J]. ACS Applied Nano Materials, 2023, 6(3): 1522-1540. |
[15] | ZHANG C, FAN W, WANG S, et al. Recent progress of wearable piezoelectric nanogenerators[J]. ACS Applied Electronic Materials, 2021, 3(6): 2449-2467. |
[16] | CHENG T, GAO Q, WANG Z L. The current development and future outlook of triboelectric nanogenerators: a survey of literature[J]. Advanced Materials Technologies, 2019. DOI: 10.1002/admt.201800588. |
[17] | ZHU G, PENG B, CHEN J, et al. Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications[J]. Nano Energy, 2015, 14: 126-138. |
[18] | FAN F R, TIAN Z Q, WANG Z L. Flexible triboelectric generator[J]. Nano Energy, 2012, 1(2): 328-334. |
[19] | ZHOU T, ZHANG C, HAN C B, et al. Woven structured triboelectric nanogenerator for wearable devices[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14695-14701. |
[20] | 王中林, 邵佳佳. 面向工程电磁学的动生麦克斯韦方程组及其求解方法[J]. 中国科学: 技术科学, 2022, 52(9): 1416-1433. |
WANG Zhonglin, SHAO Jiajia. Dynamic Maxwell equations for engineering electromagnetics and their solution[J]. Science in China:Technical Sciences, 2022, 52(9): 1416-1433. | |
[21] | WANG Z L. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators[J]. Materials Today, 2017, 20(2): 74-82. |
[22] | WANG Z L, JIANG T, XU L. Toward the blue energy dream by triboelectric nanogenerator networks[J]. Nano Energy, 2017, 39: 9-23. |
[23] | CHEN J, WEI X, WANG B, et al. Design optimization of soft-contact freestanding rotary triboelectric nanogenerator for high-output performance[J]. Advanced Energy Materials, 2021. DOI: 10.1002/aenm.202102106. |
[24] | FANG Y, ZOU Y, XU J, et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202104178. |
[25] | WANG H, XU L, WANG Z. Advances of high-performance triboelectric nanogenerators for blue energy harvesting[J]. Nanoenergy Advances, 2021, 1(1): 32-57. |
[26] | WANG Z L. On the expanded Maxwell's equations for moving charged media system: general theory, mathematical solutions and applications in TENG[J]. Materials Today, 2022, 52: 348-363. |
[27] |
LI S, ZHOU Y, ZI Y, et al. Excluding contact electrification in surface potential measurement using kelvin probe force microscopy[J]. ACS Nano, 2016, 10(2): 2528-2535.
doi: 10.1021/acsnano.5b07418 pmid: 26824304 |
[28] |
WANG Z L, WANG A C. On the origin of contact-electrification[J]. Materials Today, 2019, 30: 34-51.
doi: 10.1016/j.mattod.2019.05.016 |
[29] | FU K, ZHOU J, WU H, et al. Fibrous self-powered sensor with high stretchability for physiological information monitoring[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106258. |
[30] | WANG J, LI S, YI F, et al. Sustainably powering wearable electronics solely by biomechanical energy[J]. Nature Communications, 2016. DOI: 10.1038/ncomms12744. |
[31] | CHEN J, WEN X, LIU X, et al. Flexible hierarchical helical yarn with broad strain range for self-powered motion signal monitoring and human-machine interac-tive[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2020.105446. |
[32] | ZHANG D, YANG W, GONG W, et al. Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202100782. |
[33] | GONG W, HOU C, GUO Y, et al. A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers[J]. Nano Energy, 2017, 39: 673-683. |
[34] | GONG W, HOU C, ZHOU J, et al. Continuous and scalable manufacture of amphibious energy yarns and textiles[J]. Nature Communications, 2019. DOI: 10.1038/s41467-019-08846-2. |
[35] | YANG W, GONG W, GU W, et al. Self-powered interactive fiber electronics with visual-digital synergies[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202104681. |
[36] | WANG J, YANG W, LIU Z, et al. Ultra-fine self-powered interactive fiber electronics for smart cloth-ing[J]. Nano Energy, 2023. DOI: 10.1016/j.nanoen.2023.108171. |
[37] | ZHAO Z, YAN C, LIU Z, et al. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns[J]. Advanced Materials, 2016, 28(46): 10267-10274. |
[38] | FENG Z, YANG S, JIA S, et al. Scalable, washable and lightweight triboelectric-energy-generating fibers by the thermal drawing process for industrial loom weaving[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2020.104805. |
[39] |
CHEN C, GUO H, CHEN L, et al. Direct current fabric triboelectric nanogenerator for biomotion energy harvesting[J]. ACS Nano, 2020, 14: 4585-4594.
doi: 10.1021/acsnano.0c00138 pmid: 32181639 |
[40] | CHEN J, GUO H, PU X, et al. Traditional weaving craft for one-piece self-charging power textile for wearable electronics[J]. Nano Energy, 2018, 50: 536-543. |
[41] | FAN W, HE Q, MENG K, et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring[J]. Science Advances, 2020. DOI: 10.1126/sciadv.aay2840. |
[42] | CHEN C, CHEN L, WU Z, et al. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors[J]. Materials Today, 2020, 32: 84-93. |
[43] | DONG S, XU F, SHENG Y, et al. Seamlessly knitted stretchable comfortable textile triboelectric nanogenerators for E-textile power sources[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2020.105327. |
[44] | HUANG T, ZHANG J, YU B, et al. Fabric texture design for boosting the performance of a knitted washable textile triboelectric nanogenerator as wearable power[J]. Nano Energy, 2019, 58: 375-383. |
[45] | LI Z, ZHU M, SHEN J, et al. All-fiber structured electronic skin with high elasticity and breathabi-lity[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.201908411. |
[46] | YANG W, GONG W, HOU C, et al. All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability[J]. Nature Communications, 2019. DOI: 10.1038/s41467-019-13569-5. |
[47] | GONG W, WANG X, YANG W, et al. Wicking-polarization-induced water cluster size effect on triboelectric evaporation textiles[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202007352. |
[48] | PENG X, DONG K, YE C, et al. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators[J]. Science Advances, 2020. DOI: 10.1126/sciadv.aba9624. |
[1] | 牛丽, 刘青, 陈超余, 蒋高明, 马丕波. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 135-142. |
[2] | 吕晓双, 刘丽萍, 俞建勇, 丁彬, 李召岭. 纤维基自供能电子皮肤的构建及其应用性能研究进展[J]. 纺织学报, 2022, 43(10): 183-191. |
[3] | 李辉 王娇娜 赵树宇 李从举. 柔性全编织摩擦纳米发电织物的制备[J]. 纺织学报, 2018, 39(09): 34-38. |
[4] | 钱幺 赵宝宝 邓辉 钱晓明. 摩擦驻极对聚四氟乙烯纤维非织造布过滤性能的影响[J]. 纺织学报, 2017, 38(11): 22-26. |
|