纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 59-66.doi: 10.13475/j.fzxb.20221101801

• 纤维材料 • 上一篇    下一篇

聚己内酯/MgO复合纳米纤维膜的制备及其性能

贾琳1(), 董晓1, 王西贤1, 张海霞1, 覃小红2   

  1. 1.河南工程学院 纺织工程学院, 河南 郑州 450007
    2.东华大学 纺织学院, 上海 201620
  • 收稿日期:2022-11-07 修回日期:2023-06-02 出版日期:2024-04-15 发布日期:2024-05-13
  • 作者简介:贾琳(1986—),女,副教授,博士。主要研究方向为功能性纳米纤维纺织品。E-mail:lynnjia0328@163.com
  • 基金资助:
    河南省科技厅科技攻关项目(222102320150);河南省高校重点科研项目(21B540001);河南工程学院科研培育基金项目(PYXM202106)

Preparation and performance of polycaprolactone/MgO composite nanofibrous filter membrane

JIA Lin1(), DONG Xiao1, WANG Xixian1, ZHANG Haixia1, QIN Xiaohong2   

  1. 1. College of Textile Engineering, Henan University of Engineering, Zhengzhou, Henan 450007, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2022-11-07 Revised:2023-06-02 Published:2024-04-15 Online:2024-05-13

摘要:

为制备集多种功能于一体的纳米纤维膜,将 MgO纳米颗粒加入至可降解聚己内酯(PCL)溶液中,通过静电纺丝技术制备PCL/MgO复合纳米纤维膜,研究了其微观形态、结晶结构、过滤性能和抗菌性能等。结果表明:PCL/MgO复合纳米纤维的直径比纯PCL略有增加,且纤维膜中MgO依然保持着结晶状态;与纯PCL纤维膜相比,PCL/MgO复合纳米纤维膜的透气率增加,水接触角增大,透湿率减小;PCL/MgO复合纳米纤维膜的过滤效率为97.57%~98.87%,紫外线防护系数均大于50,具有良好的过滤性能和优异的紫外线防护性能,其对大肠杆菌的抑菌率为73.78%~98.55%,对金黄色葡萄球菌的抑菌率为53.61%~97.56%;对大肠杆菌的抑菌率优于金黄色葡萄球菌是因为MgO纳米颗粒具有晶格缺陷,更易与带有负电荷的大肠杆菌形成较强的相互作用。

关键词: MgO纳米颗粒, 聚己内酯纳米纤维, 静电纺丝, 抗菌性能, 过滤性能

Abstract:

Objective At present, the pollution of particulate matter is still serious, and hence preparation of fiber filter materials with multiple functions such as ultraviolet(UV) protection, antibacterial, high comfort and biodegradability is imperative and important in various application prospects. Magnesium oxide (MgO) nanoparticle is one type of nanostructured metal oxides, it had been chosen as antibacterial materials because of its broad-spectrum antibacterial property, biocompatibility, non-toxicity, high thermal stability, high chemical stability, and high surface reactivity. Polycaprolactone (PCL) possess good biodegradation, biocompatibility and non-toxicity. As an environmentally friendly polymer, PCL is often used in biomedical materials such as tissue engineering. This paper reports on a research that nanofibrous filter membrane with higher filtration efficiency, lower pressure drop, improved antibacterial property and excellent ultraviolet protection performance.

Method In this work, MgO nano-particles were added into polycaprolactone solution before preparing PCL/MgO nanofibrous filter membrane through electrospinning. The fibre characteristics including fibers morphologies, chemical group, crystalline texture and hydrophilic performance were tested and analyzed through scanning electron microscope, Fourier infrared spectrometer and X-ray diffraction. In addition, the filtration performance, antibacterial properties, UV protection performance and the mass fraction of MgO nanoparticles on the properties of nanofiber membrane were also studied and evaluated.

Results The morphologies of PCL and PCL/MgO nanofibers demonstrated smooth and interconnected fiber characters, and that when the MgO mass fraction was 1.5% and 2.0%, MgO nanoparticles gathered on the surface of PCL/MgO composite nanofibers. The average fiber diameter of PCL nanofiber were 147 nm, while the diameter of PCL/MgO composite nanofiber ranged from 216 to 285 nm. The addition of MgO increased the diameter of nanofiber, decreased the standard deviation of diameter, and PCL/MgO composite nanofibers showed more uniform fiber distribution. Pure PCL nanofiber membrane had lower air permeability and higher water vapor permeability, with the air permeability of 77.61 mm/s and the water vapor permeability of 3 095 g/(m2·d). The presence of MgO nanoparticles in PCL/MgO nanofibers increased the air permeability of nanofiber membranes, while decreased the water vapor permeability of nanofiber membranes. PCL and PCL/MgO nanofibers had the characteristic carbonyl peaks at 1 724 cm-1, CH2 stretching peaks at 2 945 cm-1 (asymmetric) and 2 865 cm-1 (symmetric), C—O stretching peaks at 1 050 cm-1, C—O—C stretching peaks at 1 240 cm-1 (asymmetric) and 1 163 cm-1 (symmetric). PCL nanofiber membrane showed the characteristic diffraction peaks at 21.4° and 23.8°, relating to the semi-crystalline structure of PCL macromolecular. On the pattern of PCL/MgO nanofiber membrane, three characteristic diffraction peaks at 43.2°, 62.5° and 78.7° corresponded to the (200), (220) and (222) crystal planes of the face central cubic structure of MgO, indicating that the MgO NPs still maintained their crystalline structures. The UV protection factor (UPF) of pure PCL filtration membrane was 21.37, the transmittance to UVA was 5.36%, while the UPF of PCL/MgO composite filtration membranes were 53.86-76.21, the transmittance to UVA were 2.01%-1.45%. The insertion of MgO nanoparticles in PCL nanofibrous membranes enhancend the UV protection performance of PCL/MgO composite membranes significantly. The filtration efficiency of pure PCL nanofiber membrane was 92.11% and the pressure drop was 77.42 Pa, while the filtration efficiency of PCL/MgO nanofibrous filter membranes were 97.57%-98.87% with the pressure drop being 91.18-99.96 Pa. Compared to pure PCL nanofibrous filter membrane, the filtration performance of PCL/MgO nanofibrous filter membranes demonstrated effictive increases because of the higher surface reaction and higher absorption of MgO nanoparticles to particulate matters. When the mass fraction of MgO nanoparticles was 1.0%, the filtration performance of composite PCL nanofiber membrane was best with 98.87%, filtration efficiency, while its resistance pressure drop was 99.96 Pa. The maximum quality factor was 0.044 85. All PCL/MgO composite nanofibrous membranes possessed significant antibacterial efficiency in comparison with pure PCL nanofibers. When the MgO mass fraction was 0.5%, 1.0%, 1.5% and 2.0%, the antibacterial activities of PCL/MgO nanofibers membrane against Escherichia coli were 73.78%, 83.75%, 95.13% and 98.55% respectively, while the antibacterial activities against staphylococcus aureus were 53.61%, 62.63%, 93.02% and 97.56%. Antibacterial activity against Escherichia coli was stronger than that against staphylococcus aureus, which is mainly due to the intrinsic cell wall structure of these two bacterial. In addition, there were many lattice defects on the surface of MgO nanoparticles with positive charge, which were more likely to form strong interaction with negatively charged Escherichia coli, so as to inhibit the growth of bacteria.

Conclusion PCL/MgO composite nanofibrous filter membranes were prepared through electrospinning technology, the addition of MgO nanoparticles significantly increased the filtration performance, antibacterial performance and UV absorption protection performance of PCL/MgO composite nanofiber filter membrane, which can be developed as a multifunctional nanofiber filter material. This work showed the promise of PCL nanofibers and metal oxide antibacterial membrane in various biomedical applications, including in protective filter membranes. It laid a foundation for the further industrial development of biodegradable multifunctional mask filter materials.

Key words: MgO nanoparticle, polycaprolactone nanofiber, electrospinning, antibacterial property, filtration performance

中图分类号: 

  • TS102.6

图1

PCL和PCL/MgO复合纳米纤维膜的SEM照片(×10 000)"

图2

PCL/MgO复合纳米纤维膜的纤维直径和水接触角"

图3

PCL/MgO复合纳米纤维膜中Mg元素的分布图"

图4

PCL/MgO纳米纤维膜的热湿舒适性测试结果"

图5

PCL/MgO复合纳米纤维膜的红外光谱图和XRD曲线"

表1

PCL/MgO纳米纤维膜的紫外防护性能"

MgO质量分数/% UPF值 T(UVA)AV/% T(UVB) AV/%
0 21.37 5.36 4.44
0.5 53.86 2.01 1.80
1.0 57.05 1.91 1.70
1.5 66.02 1.64 1.47
2.0 76.21 1.45 1.26

图6

PCL/MgO复合纳米纤维滤膜的过滤性能"

图7

PCL/MgO复合纳米纤维膜琼脂平板表面大肠杆菌菌落图"

图8

PCL/MgO复合纳米纤维膜琼脂平板表面金黄色葡萄球菌菌落图"

表2

PCL/MgO复合纳米纤维膜的抗菌性能"

MgO质量
分数
抑菌率
对大肠杆菌 对金黄色葡萄球菌
0.5 73.78 53.61
1.0 83.75 62.63
1.5 95.13 93.02
2.0 98.55 97.56
[1] LI H, CAI J, CHEN R, et al. Particulate matter exposure and stress hormone levels: a randomized, double-blind, crossover trial of air purification[J]. Circulation, 2017, 136(7): 618-627.
doi: 10.1161/CIRCULATIONAHA.116.026796 pmid: 28808144
[2] 贾琳, 王西贤, 李环宇, 等. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41.
doi: 10.13475/j.fzxb.20210202008
JIA Lin, WANG Xixian, LI Huanyu, et al. Preparation and performance of polyacrylonitrile/BaTiO3 nanofibrous composite filter membrane[J]. Journal of Textile Research, 2021, 42(12): 34-41.
doi: 10.13475/j.fzxb.20210202008
[3] LUO D, XIE Q, GU S M, et al. Potato starch films by incorporating tea polyphenol and MgO nanoparticles with enhanced physical, functional and preserved propert-ies[J]. International Journal of Biological Macromolecules, 2022, 221:108-120.
[4] WANG H J, CHEN M, MI L W, et al. Porous rod-like MgO complex membrane with good anti-bacterial activity directed by conjugated linolenic acid polymer[J]. Journal of Nanoparticle Research, 2016, 18(33):1-8.
[5] MAHBOUBEH M, MAEDE A. Investigation into the antibacterial behavior of suspensions of magnesium oxide nanoparticles in combination with nisin and heat against Escherichia coli and Staphylococcus aureus in milk[J]. Food Control, 2016, 68:208-215.
[6] MAKHLUF S, DROR R, NITZAN Y, et al. Microwave-sssisted synthesis of nanocrystalline MgO and its use as a bacteriocide[J]. Advanced Functional Materials, 2005, 15(10): 1708-1715.
[7] 王伟华. 纳米氧化镁/聚乳酸复合纳米纤维的制备与抗菌性能研究[D]. 深圳: 深圳大学,2015:9-10.
WANG Weihua. Preparation of nano-MgO/polylactide nanofibers and research of its antibacterial perform-ance[D]. Shenzhen: Shenzhen University, 2015:9-10.
[8] 李曼, 武丁胜, 魏安方, 等. 静电纺丝聚己内酯/明胶载姜黄素生物活性敷料的制备和性能[J]. 材料导报, 2022, 36(11): 233-239.
LI Man, WU Dingsheng, WEI Anfang, et al. Preparation and performance of electrospinning curcumin loaded polycaprolactone/gelatin bioactive wound dressing[J]. Materials Report, 2022, 36(11): 233-239.
[9] PERMYAKOVA E, MANAKHOV A, PHILIPP V, et al. Electrospun polycaprolactone/ZnO nanocomposite membranes with high antipathogen activity[J]. Polymers, 2022,14:5364-5375.
[10] ZHANG J, CAO C L, ZHENG S M, et al. Poly(butylene adipate-co-terephthalate)/magnesium oxide/silver ternary composite biofilms for food packaging application[J]. Food Packaging and Shelf Life, 2020, 24: 100487-100494.
[11] 王西贤, 孙明楷, 路志洁, 等. PAN/MgO复合纳米纤维滤膜的制备与性能分析[J]. 棉纺织技术, 2022, 50(10): 31-36.
WANG Xixian, SUN Mingkai, LU Zhijie, et al. Preparation and property analysis of PAN/MgO composite nanofiber filtration membrane[J]. Cotton Textile Technology, 2022, 50(10):31-36.
[12] 韦蕾. 原子力显微镜研究对硝酸银和纳米银对细菌的抑菌机理[D]. 南宁: 广西大学, 2019: 7-8.
WEI Lei. Study on the antimicrobial mechanism of silver nitrate and silver nanoparticles on baceteria by atomic force microscopy[D]. Nanning: Guangxi University, 2019: 7-8.
[13] AL-HAZMI F, ALNOWAISER F, AL-GHAMDI A A, et al. A new large-scale synthesis of magnesium oxide nanowires: structural and antibacterial properties[J]. Superlattices and Microstructures, 2012, 52(2): 200-209.
[14] PETERE K S, ROSALYN L K, GEORGE L M, et al. Metal oxide nanoparticles as bactericidal agents[J]. Langmuir, 2002, 18(17): 6679-6686.
[1] 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23.
[2] 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32.
[3] 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75.
[4] 杨琪, 邓南平, 程博闻, 康卫民. 树枝状磺化聚醚砜纤维基复合固态电解质的制备及其性能[J]. 纺织学报, 2024, 45(03): 1-10.
[5] 赵美奇, 陈莉, 钱现, 李晓娜, 杜迅. 用于铜离子检测的静电纺纤维膜制备及其性能[J]. 纺织学报, 2024, 45(03): 11-18.
[6] 郑晓頔, 盛平厚, 蒋佳岑, 李睿, 焦红娟, 邱志成. 铜改性抗菌防螨聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2024, 45(03): 19-27.
[7] 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20.
[8] 史玉磊, 曲连艺, 刘江龙, 徐英俊. 氧化锌/儿茶酚甲醛树脂微球抗菌粘胶纤维的制备及其性能[J]. 纺织学报, 2024, 45(02): 21-27.
[9] 周歆如, 范梦晶, 岳欣琰, 洪剑寒, 韩潇. 导电微纳纤维复合纱的制备及其气敏特性[J]. 纺织学报, 2024, 45(02): 52-58.
[10] 杨智超, 刘淑强, 吴改红, 贾潞, 张曼, 李甫, 李慧敏. 可吸收手术缝合线研究进展[J]. 纺织学报, 2024, 45(01): 230-239.
[11] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[12] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[13] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[14] 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34.
[15] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!